In this paper we shall prove that the ℤ-subalgebra generated by the divided powers of the Drinfeld generators (r ∈ ℤ) of the Kac–Moody algebra of type is an integral form (strictly smaller than Mitzman’s; see [Mi]) of the enveloping algebra, we shall exhibit a basis generalizing the one provided in [G] for the untwisted affine Kac–Moody algebras and we shall determine explicitly the commutation relations. Moreover, we prove that both in the untwisted and in the twisted case the positive (respectively negative) imaginary part of the integral form is an algebra of polynomials over ℤ.

Damiani, I., Paolini, M. (2023). On the integral form of rank 1 Kac-Moody algebras. TRANSFORMATION GROUPS, 28(4), 1495-1559 [10.1007/s00031-023-09801-8].

On the integral form of rank 1 Kac-Moody algebras

Damiani, I
;
2023-01-01

Abstract

In this paper we shall prove that the ℤ-subalgebra generated by the divided powers of the Drinfeld generators (r ∈ ℤ) of the Kac–Moody algebra of type is an integral form (strictly smaller than Mitzman’s; see [Mi]) of the enveloping algebra, we shall exhibit a basis generalizing the one provided in [G] for the untwisted affine Kac–Moody algebras and we shall determine explicitly the commutation relations. Moreover, we prove that both in the untwisted and in the twisted case the positive (respectively negative) imaginary part of the integral form is an algebra of polynomials over ℤ.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-02/A - Algebra
English
Con Impact Factor ISI
Damiani, I., Paolini, M. (2023). On the integral form of rank 1 Kac-Moody algebras. TRANSFORMATION GROUPS, 28(4), 1495-1559 [10.1007/s00031-023-09801-8].
Damiani, I; Paolini, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
TransformationGroups_A22integral.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 730.56 kB
Formato Adobe PDF
730.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/395707
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact