The Large Hadron–Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron–proton and proton–proton operations. This report represents an update to the LHeC’s conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton–nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron–hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.

Agostini, P., Aksakal, H., Alekhin, S., Allport, P.p., Andari, N., Andre, K., et al. (2021). The Large Hadron–Electron Collider at the HL-LHC. JOURNAL OF PHYSICS. G, NUCLEAR AND PARTICLE PHYSICS, 48(11) [10.1088/1361-6471/abf3ba].

The Large Hadron–Electron Collider at the HL-LHC

Arduini, G;Das, A;Giuli, F;Latina, A;Liu, T;Liu, W;Moretti, S;Navarra, F;Xu, T;Zhang, C;Zhang, Z;
2021-01-01

Abstract

The Large Hadron–Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron–proton and proton–proton operations. This report represents an update to the LHeC’s conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton–nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron–hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.
2021
Pubblicato
Rilevanza internazionale
Recensione
Esperti anonimi
Settore PHYS-01/A - Fisica sperimentale delle interazioni fondamentali e applicazioni
English
Con Impact Factor ISI
Accelerator physics
Beyond Standard Model
Deep-inelastic scattering
Energy-recovery-linac
Higgs
High-lumi LHC
Nuclear physics
QCD
Top and electroweak physics
Agostini, P., Aksakal, H., Alekhin, S., Allport, P.p., Andari, N., Andre, K., et al. (2021). The Large Hadron–Electron Collider at the HL-LHC. JOURNAL OF PHYSICS. G, NUCLEAR AND PARTICLE PHYSICS, 48(11) [10.1088/1361-6471/abf3ba].
Agostini, P; Aksakal, H; Alekhin, S; Allport, Pp; Andari, N; Andre, Kdj; Angal-Kalinin, D; Antusch, S; Aperio Bella, L; Apolinario, L; Apsimon, R; Apy...espandi
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Agostini_2021_J._Phys._G:_Nucl._Part._Phys._48_110501.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 34.98 MB
Formato Adobe PDF
34.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/395306
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 185
  • ???jsp.display-item.citation.isi??? 123
social impact