Through the substitution of Li with Na in Li6C60, we synthesized a series of mixed alkali cluster intercalated fullerides, NaxLi6-xC60. These compounds share lattices of Na6C60 and Li6C60 with a cubic parameter linearly dependent on x. H2 absorption and desorption were studied by means of charge/discharge kinetic measurements and coupled calorimetric-manometric evaluation. By varying the stoichiometry, we found the best compromise among the absorption rate, temperature and amount of hydrogen for x = 0.5 and 1. Small concentrations of Na substituted to Li significantly lower the absorption temperature of Li6C60, improving the hydrogenation capacity, the kinetics, and the dehydrogenation enthalpy, the latter being 43.8 kJ mol-1 H2 for x = 1. This study moves further toward the utilization of intercalated fullerides for hydrogen storage applications.

Gaboardi, M., Milanese, C., Magnani, G., Girella, A., Pontiroli, D., Cofrancesco, P., et al. (2017). Optimal hydrogen storage in sodium substituted lithium fullerides. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 19(33), 21980-21986 [10.1039/c7cp04353h].

Optimal hydrogen storage in sodium substituted lithium fullerides

Gaboardi, M.
;
2017-01-01

Abstract

Through the substitution of Li with Na in Li6C60, we synthesized a series of mixed alkali cluster intercalated fullerides, NaxLi6-xC60. These compounds share lattices of Na6C60 and Li6C60 with a cubic parameter linearly dependent on x. H2 absorption and desorption were studied by means of charge/discharge kinetic measurements and coupled calorimetric-manometric evaluation. By varying the stoichiometry, we found the best compromise among the absorption rate, temperature and amount of hydrogen for x = 0.5 and 1. Small concentrations of Na substituted to Li significantly lower the absorption temperature of Li6C60, improving the hydrogenation capacity, the kinetics, and the dehydrogenation enthalpy, the latter being 43.8 kJ mol-1 H2 for x = 1. This study moves further toward the utilization of intercalated fullerides for hydrogen storage applications.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore CHEM-03/A - Chimica generale e inorganica
Settore PHYS-03/A - Fisica sperimentale della materia e applicazioni
Settore CHEM-02/A - Chimica fisica
English
Con Impact Factor ISI
Gaboardi, M., Milanese, C., Magnani, G., Girella, A., Pontiroli, D., Cofrancesco, P., et al. (2017). Optimal hydrogen storage in sodium substituted lithium fullerides. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 19(33), 21980-21986 [10.1039/c7cp04353h].
Gaboardi, M; Milanese, C; Magnani, G; Girella, A; Pontiroli, D; Cofrancesco, P; Marini, A; Ricc(\`o), M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
c7cp04353h.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.88 MB
Formato Adobe PDF
2.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/395003
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact