Non-destructive imaging techniques provide a unique opportunity to study crack initiation and propagation behaviour in structural materials. To evaluate the applicability of different volumetric imaging techniques, a round bar notched sample of duplex stainless steel was fatigue cracked and studied in situ and ex situ. Neutron and synchrotron X-ray tomography was used along with destructive methods and Bragg edge neutron imaging to evaluate the fatigue crack. Neutron attenuation tomography obtained a three-dimensional image in which the crack was readily identifiable. The neutron tomography, although lower in spatial resolution compared with the X-ray synchrotron tomography and requiring higher acquisition time, is sensitive to the phase chemistry, and has the potential to study engineering size components. Bragg edge neutron transmission imaging allows for the mapping of two-dimensional elastic strains and was used to identify the fatigue crack from the reduction in the strain in the region where the crack propagated. A finite element model of the cracked specimen was used to simulate the average through thickness strain that is measured by the Bragg edge neutron imaging technique. The strains measured in the ferritic phase correspond better with the simulation strains than the strain measured in the austenitic phase. It is concluded that this difference is due to strain partitioning, which is influenced by the strong texture present in the duplex steel.
Reid, A., Marshall, M., Kabra, S., Minniti, T., Kockelmann, W., Connolley, T., et al. (2019). Application of neutron imaging to detect and quantify fatigue cracking. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 159, 182-194 [10.1016/j.ijmecsci.2019.05.037].
Application of neutron imaging to detect and quantify fatigue cracking
Minniti, T.;
2019-01-01
Abstract
Non-destructive imaging techniques provide a unique opportunity to study crack initiation and propagation behaviour in structural materials. To evaluate the applicability of different volumetric imaging techniques, a round bar notched sample of duplex stainless steel was fatigue cracked and studied in situ and ex situ. Neutron and synchrotron X-ray tomography was used along with destructive methods and Bragg edge neutron imaging to evaluate the fatigue crack. Neutron attenuation tomography obtained a three-dimensional image in which the crack was readily identifiable. The neutron tomography, although lower in spatial resolution compared with the X-ray synchrotron tomography and requiring higher acquisition time, is sensitive to the phase chemistry, and has the potential to study engineering size components. Bragg edge neutron transmission imaging allows for the mapping of two-dimensional elastic strains and was used to identify the fatigue crack from the reduction in the strain in the region where the crack propagated. A finite element model of the cracked specimen was used to simulate the average through thickness strain that is measured by the Bragg edge neutron imaging technique. The strains measured in the ferritic phase correspond better with the simulation strains than the strain measured in the austenitic phase. It is concluded that this difference is due to strain partitioning, which is influenced by the strong texture present in the duplex steel.File | Dimensione | Formato | |
---|---|---|---|
A. Reid et al., IJMS 159 (2019), pp. 182-194.pdf.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
5.45 MB
Formato
Adobe PDF
|
5.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.