Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
We present the first results of the Fermilab National Accelerator Laboratory (FNAL) Muon g-2 Experiment for the positive muon magnetic anomaly aμ(gμ-2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency ωa between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic resonance probes calibrated in terms of the equivalent proton spin precession frequency ω p ′ in a spherical water sample at 34.7 °C. The ratio ωa/ω p ′, together with known fundamental constants, determines aμ(FNAL)=116 592 040(54)×10-11 (0.46 ppm). The result is 3.3 standard deviations greater than the standard model prediction and is in excellent agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement. After combination with previous measurements of both μ+ and μ-, the new experimental average of aμ(Exp)=116 592 061(41)×10-11 (0.35 ppm) increases the tension between experiment and theory to 4.2 standard deviations.
Abi, B., Albahri, T., Al-Kilani, S., Allspach, D., Alonzi, L.p., Anastasi, A., et al. (2021). Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. PHYSICAL REVIEW LETTERS, 126(14) [10.1103/physrevlett.126.141801].
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm
Abi, B.;Albahri, T.;Al-Kilani, S.;Allspach, D.;Alonzi, L. P.;Anastasi, A.;Anisenkov, A.;Azfar, F.;Badgley, K.;Bae(\ss)ler, S.;Bailey, I.;Baranov, V. A.;Barlas-Yucel, E.;Barrett, T.;Barzi, E.;Basti, A.;Bedeschi, F.;Behnke, A.;Berz, M.;Bhattacharya, M.;Binney, H. P.;Bjorkquist, R.;Bloom, P.;Bono, J.;Bottalico, E.;Bowcock, T.;Boyden, D.;Cantatore, G.;Carey, R. M.;Carroll, J.;Casey, B. C. K.;Cauz, D.;Ceravolo, S.;Chakraborty, R.;Chang, S. P.;Chapelain, A.;Chappa, S.;Charity, S.;Chislett, R.;Choi, J.;Chu, Z.;Chupp, T. E.;Convery, M. E.;Conway, A.;Corradi, G.;Corrodi, S.;Cotrozzi, L.;Crnkovic, J. D.;Dabagov, S.;De Lurgio, P. M.;Debevec, P. T.;Di Falco, S.;Di Meo, P.;Di Sciascio, G.;Di Stefano, R.;Drendel, B.;Driutti, A.;Duginov, V. N.;Eads, M.;Eggert, N.;Epps, A.;Esquivel, J.;Farooq, M.;Fatemi, R.;Ferrari, C.;Fertl, M.;Fiedler, A.;Fienberg, A. T.;Fioretti, A.;Flay, D.;Foster, S. B.;Friedsam, H.;Frle?, E.;Froemming, N. S.;Fry, J.;Fu, C.;Gabbanini, C.;Galati, M. D.;Ganguly, S.;Garcia, A.;Gastler, D. E.;George, J.;Gibbons, L. K.;Gioiosa, A.;Giovanetti, K. L.;Girotti, P.;Gohn, W.;Gorringe, T.;Grange, J.;Grant, S.;Gray, F.;Haciomeroglu, S.;Hahn, D.;Halewood-Leagas, T.;Hampai, D.;Han, F.;Hazen, E.;Hempstead, J.;Henry, S.;Herrod, A. T.;Hertzog, D. W.;Hesketh, G.;Hibbert, A.;Hodge, Z.;Holzbauer, J. L.;Hong, K. W.;Hong, R.;Iacovacci, M.;Incagli, M.;Johnstone, C.;Johnstone, J. A.;Kammel, P.;Kargiantoulakis, M.;Karuza, M.;Kaspar, J.;Kawall, D.;Kelton, L.;Keshavarzi, A.;Kessler, D.;Khaw, K. S.;Khechadoorian, Z.;Khomutov, N. V.;Kiburg, B.;Kiburg, M.;Kim, O.;Kim, S. C.;Kim, Y. I.;King, B.;Kinnaird, N.;Korostelev, M.;Kourbanis, I.;Kraegeloh, E.;Krylov, V. A.;Kuchibhotla, A.;Kuchinskiy, N. A.;Labe, K. R.;Labounty, J.;Lancaster, M.;Lee, M. J.;Lee, S.;Leo, S.;Li, B.;Li, D.;Li, L.;Logashenko, I.;Lorente Campos, A.;Luc(\`a), A.;Lukicov, G.;Luo, G.;Lusiani, A.;Lyon, A. L.;MacCoy, B.;Madrak, R.;Makino, K.;Marignetti, F.;Mastroianni, S.;Maxfield, S.;McEvoy, M.;Merritt, W.;Mikhailichenko, A. A.;Miller, J. P.;Miozzi, S.;Morgan, J. P.;Morse, W. M.;Mott, J.;Motuk, E.;Nath, A.;Newton, D.;Nguyen, H.;Oberling, M.;Osofsky, R.;Ostiguy, J. -F.;Park, S.;Pauletta, G.;Piacentino, G. M.;Pilato, R. N.;Pitts, K. T.;Plaster, B.;Po?ani?, D.;Pohlman, N.;Polly, C. C.;Popovic, M.;Price, J.;Quinn, B.;Raha, N.;Ramachandran, S.;Ramberg, E.;Rider, N. T.;Ritchie, J. L.;Roberts, B. L.;Rubin, D. L.;Santi, L.;Sathyan, D.;Schellman, H.;Schlesier, C.;Schreckenberger, A.;Semertzidis, Y. K.;Shatunov, Y. M.;Shemyakin, D.;Shenk, M.;Sim, D.;Smith, M. W.;Smith, A.;Soha, A. K.;Sorbara, M.;D. Stöckinger;J. Stapleton;D. Still;C. Stoughton;D. Stratakis;C. Strohman;T. Stuttard;H. E. Swanson;G. Sweetmore;D. A. Sweigart;M. J. Syphers;D. A. Tarazona;T. Teubner;A. E. Tewsley-Booth;K. Thomson;V. Tishchenko;N. H. Tran;W. Turner;E. Valetov;D. Vasilkova;G. Venanzoni;V. P. Volnykh;T. Walton;M. Warren;A. Weisskopf;L. Welty-Rieger;M. Whitley;P. Winter);A. Wolski;M. Wormald;W. Wu;C. Yoshikawa
2021-01-01
Abstract
We present the first results of the Fermilab National Accelerator Laboratory (FNAL) Muon g-2 Experiment for the positive muon magnetic anomaly aμ(gμ-2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency ωa between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic resonance probes calibrated in terms of the equivalent proton spin precession frequency ω p ′ in a spherical water sample at 34.7 °C. The ratio ωa/ω p ′, together with known fundamental constants, determines aμ(FNAL)=116 592 040(54)×10-11 (0.46 ppm). The result is 3.3 standard deviations greater than the standard model prediction and is in excellent agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement. After combination with previous measurements of both μ+ and μ-, the new experimental average of aμ(Exp)=116 592 061(41)×10-11 (0.35 ppm) increases the tension between experiment and theory to 4.2 standard deviations.
Settore PHYS-01/A - Fisica sperimentale delle interazioni fondamentali e applicazioni
English
Con Impact Factor ISI
Magnetic moment; Muons; Accelerators & storage rings; Precision measurements
Abi, B., Albahri, T., Al-Kilani, S., Allspach, D., Alonzi, L.p., Anastasi, A., et al. (2021). Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. PHYSICAL REVIEW LETTERS, 126(14) [10.1103/physrevlett.126.141801].
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/394874
Citazioni
ND
1243
955
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.