Manganese hexacyanoferrates (MnHCF) are promising positive electrode materials for non-aqueous batteries, including Na-ion batteries, due to their large specific capacity (>130 mAh g-1 ), high discharge potential and sustainability. Typically, the electrochemical reaction of MnHCF associates with phase and structural changes, due to the Jahn-Teller (JT) distortion of Mn sites upon the charge process. To understand the effect of the MnHCF structure on its electrochemical performance, two MnHCF materials with different vacancies content are investigated herein. The electrochemical results show that the sample with lower vacancy content (4 %) exhibits relatively higher capacity retention of 99.1 % and 92.6 % at 2nd and 10th cycles, respectively, with respect to 97.4 % and 79.3 % in sample with higher vacancy content (11 %). Ex-situ X-ray absorption spectroscopy (XAS) and ex situ X-ray diffraction (XRD) characterization results show that a weaker cooperative JT-distortion effect and relatively smaller crystal structure modification occurred for the material with lower vacancies, which explains the better electrochemical performance in cycled electrodes.

Li, M., Gaboardi, M., Mullaliu, A., Maisuradze, M., Xue, X., Aquilanti, G., et al. (2023). Influence of Vacancies in Manganese Hexacyanoferrate Cathode for Organic Na-Ion Batteries: A Structural Perspective. CHEMSUSCHEM, 16(12) [10.1002/cssc.202300201].

Influence of Vacancies in Manganese Hexacyanoferrate Cathode for Organic Na-Ion Batteries: A Structural Perspective

Li M.;Gaboardi M.;Xue X.;Passerini S.
;
2023-01-01

Abstract

Manganese hexacyanoferrates (MnHCF) are promising positive electrode materials for non-aqueous batteries, including Na-ion batteries, due to their large specific capacity (>130 mAh g-1 ), high discharge potential and sustainability. Typically, the electrochemical reaction of MnHCF associates with phase and structural changes, due to the Jahn-Teller (JT) distortion of Mn sites upon the charge process. To understand the effect of the MnHCF structure on its electrochemical performance, two MnHCF materials with different vacancies content are investigated herein. The electrochemical results show that the sample with lower vacancy content (4 %) exhibits relatively higher capacity retention of 99.1 % and 92.6 % at 2nd and 10th cycles, respectively, with respect to 97.4 % and 79.3 % in sample with higher vacancy content (11 %). Ex-situ X-ray absorption spectroscopy (XAS) and ex situ X-ray diffraction (XRD) characterization results show that a weaker cooperative JT-distortion effect and relatively smaller crystal structure modification occurred for the material with lower vacancies, which explains the better electrochemical performance in cycled electrodes.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore PHYS-03/A - Fisica sperimentale della materia e applicazioni
Settore CHEM-03/A - Chimica generale e inorganica
English
Con Impact Factor ISI
Jahn-Teller distortion
cycling stability
manganese hexacyanoferrate
organic Na-ion battery
vacancy content
Li, M., Gaboardi, M., Mullaliu, A., Maisuradze, M., Xue, X., Aquilanti, G., et al. (2023). Influence of Vacancies in Manganese Hexacyanoferrate Cathode for Organic Na-Ion Batteries: A Structural Perspective. CHEMSUSCHEM, 16(12) [10.1002/cssc.202300201].
Li, M; Gaboardi, M; Mullaliu, A; Maisuradze, M; Xue, X; Aquilanti, G; Rikkert Plaisier, J; Passerini, S; Giorgetti, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
ChemSusChem - 2023 - Li - Influence of Vacancies in Manganese Hexacyanoferrate Cathode for Organic Na‐Ion Batteries A.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.06 MB
Formato Adobe PDF
6.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/394713
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact