A mathematical model is developed to analyse the hydrodynamics of a novel oscillating water column (OWC) in a hybrid wind-wave energy system. The OWC has a coaxial cylindrical structure in which the internal cylinder represents the mono-pile of an offshore wind turbine while the external cylinder has a skirt whose scope is to guide the wave energy flux inside the chamber. This layout is not casual, but consistent with the current approach to harnessing wave energy through hybrid systems. The device shape is rather complex and the boundary value problem is solved by applying the matching-method of eigenfunctions. Within the framework of a linearised theory, we model the turbine damping effects by assuming the airflow to be proportional to the air chamber pressure. Consequently, the velocity potential can be decomposed into radiation and diffraction problems. We study the effects of both skirt and internal radius dimensions on the power extraction efficiency for monochromatic and random waves. We show that the skirt has strong effects on the global behaviour, while the internal cylinder affects the values of the sloshing eigenfrequencies. Finally, we validate the analytical model with laboratory data and show a good agreement between analytical and experimental results.

Michele, S., Renzi, E., Perez-Collazo, C., Greaves, D., Iglesias, G. (2019). Power extraction in regular and random waves from an OWC in hybrid wind-wave energy systems. OCEAN ENGINEERING, 191 [10.1016/j.oceaneng.2019.106519].

Power extraction in regular and random waves from an OWC in hybrid wind-wave energy systems

Michele, S.
;
Renzi, E.;
2019-01-01

Abstract

A mathematical model is developed to analyse the hydrodynamics of a novel oscillating water column (OWC) in a hybrid wind-wave energy system. The OWC has a coaxial cylindrical structure in which the internal cylinder represents the mono-pile of an offshore wind turbine while the external cylinder has a skirt whose scope is to guide the wave energy flux inside the chamber. This layout is not casual, but consistent with the current approach to harnessing wave energy through hybrid systems. The device shape is rather complex and the boundary value problem is solved by applying the matching-method of eigenfunctions. Within the framework of a linearised theory, we model the turbine damping effects by assuming the airflow to be proportional to the air chamber pressure. Consequently, the velocity potential can be decomposed into radiation and diffraction problems. We study the effects of both skirt and internal radius dimensions on the power extraction efficiency for monochromatic and random waves. We show that the skirt has strong effects on the global behaviour, while the internal cylinder affects the values of the sloshing eigenfrequencies. Finally, we validate the analytical model with laboratory data and show a good agreement between analytical and experimental results.
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore CEAR-01/A - Idraulica
English
Oscillating water column
Wave energy
Wave–structure interactions
Michele, S., Renzi, E., Perez-Collazo, C., Greaves, D., Iglesias, G. (2019). Power extraction in regular and random waves from an OWC in hybrid wind-wave energy systems. OCEAN ENGINEERING, 191 [10.1016/j.oceaneng.2019.106519].
Michele, S; Renzi, E; Perez-Collazo, C; Greaves, D; Iglesias, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Michele_et_al_2019.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/394437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 62
social impact