Within the framework of continuum mechanics, the mechanical behaviour of geomaterials is often described through rate-independent elastoplasticity. In this field, the Cam-Clay models are considered as the paradigmatic example of hardening plasticity models exhibiting pressure dependence and dilation-related hardening/softening. Depending on the amount of softening exhibited by the material, the equations governing the elastoplastic evolution problem may become ill-posed, leading to either no solutions or two solution branches (critical and sub-critical softening). Recently, a method was proposed to handle subcritical softening in Cam-Clay plasticity through an adaptive viscoplastic regularization for the equations of the rate-independent evolution problem. In this work, an algorithm for the numerical integration of the Cam-Clay model with adaptive viscoplastic regularization is presented, allowing the numerical treatment of stress-strain jumps in the constitutive response of the material. The algorithm belongs to the class of implicit return mapping schemes, slightly rearranged to take into account the rate-dependent nature of inelastic deformations. Applications of the algorithm to standard axisymmetric compression tests are discussed.
Conti, R., Tamagnini, C., Desimone, A. (2013). Critical softening in Cam-Clay plasticity: adaptive viscous regularization, dilated time and numerical integration across stress-strain jump discontinuities. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 258, 118-133 [10.1016/j.cma.2013.02.002].
Critical softening in Cam-Clay plasticity: adaptive viscous regularization, dilated time and numerical integration across stress-strain jump discontinuities
Conti, R.;
2013-01-01
Abstract
Within the framework of continuum mechanics, the mechanical behaviour of geomaterials is often described through rate-independent elastoplasticity. In this field, the Cam-Clay models are considered as the paradigmatic example of hardening plasticity models exhibiting pressure dependence and dilation-related hardening/softening. Depending on the amount of softening exhibited by the material, the equations governing the elastoplastic evolution problem may become ill-posed, leading to either no solutions or two solution branches (critical and sub-critical softening). Recently, a method was proposed to handle subcritical softening in Cam-Clay plasticity through an adaptive viscoplastic regularization for the equations of the rate-independent evolution problem. In this work, an algorithm for the numerical integration of the Cam-Clay model with adaptive viscoplastic regularization is presented, allowing the numerical treatment of stress-strain jumps in the constitutive response of the material. The algorithm belongs to the class of implicit return mapping schemes, slightly rearranged to take into account the rate-dependent nature of inelastic deformations. Applications of the algorithm to standard axisymmetric compression tests are discussed.File | Dimensione | Formato | |
---|---|---|---|
Conti_Tamagnini_Desimone_2013.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.