We present a novel activity-based detection strategy for matrix metalloproteinase 2 (MMP2), a critical cancer protease biomarker, leveraging a mechanism responsive to the proteolytic activity of MMP2 and its integration with CRISPR-Cas12a-assisted signal amplification. We designed a chemical translator comprising two functional units─a peptide and a peptide nucleic acid (PNA), fused together. The peptide presents the substrate of MMP2, while the PNA serves as a nucleic acid output for subsequent processing. This chemical translator was immobilized on micrometer magnetic beads as a physical support for an activity-based assay. We incorporated into our design a single-stranded DNA partially hybridized with the PNA sequence and bearing a region complementary to the RNA guide of CRISPR-Cas12a. The target-induced nuclease activity of Cas12a results in the degradation of FRET-labeled DNA reporters and amplified fluorescence signal, enabling the detection of MMP2 in the low picomolar range, showing a limit of detection of 72 pg/mL. This study provides new design principles for a broader applicability of CRISPR-Cas-based biosensing.
Capelli, L., Pedrini, F., Di Pede, A.c., Chamorro-Garcia, A., Bagheri, N., Fortunati, S., et al. (2024). Synthetic Protein-to-DNA Input Exchange for Protease Activity Detection Using CRISPR-Cas12a. ANALYTICAL CHEMISTRY, 96(47), 18645-18654 [10.1021/acs.analchem.4c02622].
Synthetic Protein-to-DNA Input Exchange for Protease Activity Detection Using CRISPR-Cas12a
Pedrini, Federica;Di Pede, Andrea C;Chamorro-Garcia, Alejandro;Bagheri, Neda;Porchetta, Alessandro;Bertucci, Alessandro
2024-11-26
Abstract
We present a novel activity-based detection strategy for matrix metalloproteinase 2 (MMP2), a critical cancer protease biomarker, leveraging a mechanism responsive to the proteolytic activity of MMP2 and its integration with CRISPR-Cas12a-assisted signal amplification. We designed a chemical translator comprising two functional units─a peptide and a peptide nucleic acid (PNA), fused together. The peptide presents the substrate of MMP2, while the PNA serves as a nucleic acid output for subsequent processing. This chemical translator was immobilized on micrometer magnetic beads as a physical support for an activity-based assay. We incorporated into our design a single-stranded DNA partially hybridized with the PNA sequence and bearing a region complementary to the RNA guide of CRISPR-Cas12a. The target-induced nuclease activity of Cas12a results in the degradation of FRET-labeled DNA reporters and amplified fluorescence signal, enabling the detection of MMP2 in the low picomolar range, showing a limit of detection of 72 pg/mL. This study provides new design principles for a broader applicability of CRISPR-Cas-based biosensing.File | Dimensione | Formato | |
---|---|---|---|
capelli-et-al-2024-synthetic-protein-to-dna-input-exchange-for-protease-activity-detection-using-crispr-cas12a-1.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.01 MB
Formato
Adobe PDF
|
3.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.