Mismatch repair (MMR) has been shown to control homologous recombination (HR) by aborting strand exchange between divergent sequences. We previously demonstrated that MMR-deficient tumour cells are more resistant to chromosomal damage induced by bleomycin (BLM) during the G(2) phase, likely due to the lack of the MMR inhibitory effect on HR. Aim of this study was to investigate whether inhibition of HR by the nucleoside analogue BVDU [(E)-5(2-bromovinyl)-2'-deoxyuridine, brivudin], or silencing of genes involved in HR function, might affect sensitivity of MMR-deficient turnout cells to DNA damage induced by BLM in G(2). The results indicated that BVDU increased chromatid damage and DNA double strand breaks induced by BLM only in MMR-deficient MT-1, HL-60R, HCT116 cells, which are more resistant to BLM with respect to MMR-proficient TK-6, HL-60S and HCT116/3-6 lines. Silencing of RAD51,a key component of HR, increased sensitivity of MMR-deficient HCT-15 cells to BLM clastogenicity; in this case combined treatment with BVDU had no additional effect. Similarly, treatment with BVDU did not affect BLM clastogenicity, in CAPAN-1 cells, characterized by a defective HR due to BRCA2 mutations. Conversely, BVDU increased chromatid breaks induced by BLM in HCT-15 cells transiently silenced for DNA-PK catalytic subunit, which plays a key role in non-homologous end joining. The BVDU-mediated increase of chromatid breaks in MMR-deficient cells did not depend on its previously reported inhibitory effect on poly(ADP-ribose) polymerase (PARP). In fact, it was observed also in cells stably silenced for PARP-1, which is responsible for most of cellular PARP activity. These data support the suggestion that the higher sensitivity of MMR-proficient versus MMR-deficient cells to BLM-induced chromatid breaks in the G(2) phase is a consequence of the inhibition of HR by MMR. In MMR-deficient cells, BVDU attenuates the repair of BLM-induced DSBs and this is likely to occur via inhibition of HR. (c) 2009 Elsevier B.V. All rights reserved.

Vernole, P., Muzi, A., Volpi, A., Dorio, A., Terrinoni, A., Shah, G., et al. (2009). Inhibition of homologous recombination by treatment with BVDU (brivudin) or by RAD51 silencing increases chromosomal damage induced by bleomycin in mismatch repair-deficient tumour cells. MUTATION RESEARCH, 664, 39-47 [10.1016/j.mrfmmm.2009.02.005].

Inhibition of homologous recombination by treatment with BVDU (brivudin) or by RAD51 silencing increases chromosomal damage induced by bleomycin in mismatch repair-deficient tumour cells

VERNOLE, PATRIZIA;VOLPI, ANTONIO;Terrinoni, A;GRAZIANI, GRAZIA
2009-01-01

Abstract

Mismatch repair (MMR) has been shown to control homologous recombination (HR) by aborting strand exchange between divergent sequences. We previously demonstrated that MMR-deficient tumour cells are more resistant to chromosomal damage induced by bleomycin (BLM) during the G(2) phase, likely due to the lack of the MMR inhibitory effect on HR. Aim of this study was to investigate whether inhibition of HR by the nucleoside analogue BVDU [(E)-5(2-bromovinyl)-2'-deoxyuridine, brivudin], or silencing of genes involved in HR function, might affect sensitivity of MMR-deficient turnout cells to DNA damage induced by BLM in G(2). The results indicated that BVDU increased chromatid damage and DNA double strand breaks induced by BLM only in MMR-deficient MT-1, HL-60R, HCT116 cells, which are more resistant to BLM with respect to MMR-proficient TK-6, HL-60S and HCT116/3-6 lines. Silencing of RAD51,a key component of HR, increased sensitivity of MMR-deficient HCT-15 cells to BLM clastogenicity; in this case combined treatment with BVDU had no additional effect. Similarly, treatment with BVDU did not affect BLM clastogenicity, in CAPAN-1 cells, characterized by a defective HR due to BRCA2 mutations. Conversely, BVDU increased chromatid breaks induced by BLM in HCT-15 cells transiently silenced for DNA-PK catalytic subunit, which plays a key role in non-homologous end joining. The BVDU-mediated increase of chromatid breaks in MMR-deficient cells did not depend on its previously reported inhibitory effect on poly(ADP-ribose) polymerase (PARP). In fact, it was observed also in cells stably silenced for PARP-1, which is responsible for most of cellular PARP activity. These data support the suggestion that the higher sensitivity of MMR-proficient versus MMR-deficient cells to BLM-induced chromatid breaks in the G(2) phase is a consequence of the inhibition of HR by MMR. In MMR-deficient cells, BVDU attenuates the repair of BLM-induced DSBs and this is likely to occur via inhibition of HR. (c) 2009 Elsevier B.V. All rights reserved.
2009
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore BIO/13 - BIOLOGIA APPLICATA
English
Con Impact Factor ISI
Bleomycin; Brivudin; Homologous recombination; Mismatch repair; PARP1
Vernole, P., Muzi, A., Volpi, A., Dorio, A., Terrinoni, A., Shah, G., et al. (2009). Inhibition of homologous recombination by treatment with BVDU (brivudin) or by RAD51 silencing increases chromosomal damage induced by bleomycin in mismatch repair-deficient tumour cells. MUTATION RESEARCH, 664, 39-47 [10.1016/j.mrfmmm.2009.02.005].
Vernole, P; Muzi, A; Volpi, A; Dorio, A; Terrinoni, A; Shah, G; Graziani, G
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/39369
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact