We introduce the concept of fragment localized molecular orbitals (FLMOs), which are Hartree-Fock molecular orbitals localized in specific fragments constituting a molecular system. In physical terms, we minimize the local electronic energies of the different fragments, at the cost of maximizing the repulsion between them. To showcase the approach, we rationalize the main interactions occurring in large biological systems in terms of interactions between the fragments of the system. In particular, we study an anticancer drug intercalated within DNA and retinal in anabaena sensory rhodopsin as prototypes of molecular systems embedded in biological matrixes. Finally, the FLMOs are exploited to rationalize the formation of two oligomers, prototypes of amyloid diseases, such as Parkinson and Alzheimer.
Giovannini, T., Koch, H. (2022). Fragment Localized Molecular Orbitals. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 18(8), 4806-4813 [10.1021/acs.jctc.2c00359].
Fragment Localized Molecular Orbitals
Giovannini, Tommaso
;
2022-01-01
Abstract
We introduce the concept of fragment localized molecular orbitals (FLMOs), which are Hartree-Fock molecular orbitals localized in specific fragments constituting a molecular system. In physical terms, we minimize the local electronic energies of the different fragments, at the cost of maximizing the repulsion between them. To showcase the approach, we rationalize the main interactions occurring in large biological systems in terms of interactions between the fragments of the system. In particular, we study an anticancer drug intercalated within DNA and retinal in anabaena sensory rhodopsin as prototypes of molecular systems embedded in biological matrixes. Finally, the FLMOs are exploited to rationalize the formation of two oligomers, prototypes of amyloid diseases, such as Parkinson and Alzheimer.File | Dimensione | Formato | |
---|---|---|---|
2022_TG_Koch_FLMO_JCTC.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
5.98 MB
Formato
Adobe PDF
|
5.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.