We present a computational study of static and dynamic linear polarizabilities in solution. We use different theoretical approaches to describe solvent effects, ranging from quantum mechanics/molecular mechanics (QM/MM) to quantum embedding approaches. In particular, we consider non-polarizable and polarizable QM/MM methods, the latter based on the fluctuating charge (FQ) force field. In addition, we use a quantum embedding method defined in the context of multilevel Hartree-Fock (MLHF), where the system is divided into active and inactive regions, and combine it with a third layer described by means of the FQ model. The multiscale approaches are then used as reference wave functions for equation-of-motion coupled cluster (EOM-CC) response properties, allowing for the account of electron correlation. The developed models are applied to the calculation of linear response properties of two organic moieties—namely, para-nitroaniline and benzonitrile—in non-aqueous solvents—1,4-dioxane, acetonitrile, and tetrahydrofuran. The computed polarizabilities are then discussed in terms of the physico-chemical solute-solvent interactions described by each method (electrostatic, polarization and Pauli repulsion), and finally compared with the available experimental references.

Goletto, L., Gomez, S., Andersen, J.h., Koch, H., Giovannini, T. (2022). Linear response properties of solvated systems: a computational study. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 24(45), 27866-27878 [10.1039/d2cp04512e].

Linear response properties of solvated systems: a computational study

Tommaso Giovannini
2022-01-01

Abstract

We present a computational study of static and dynamic linear polarizabilities in solution. We use different theoretical approaches to describe solvent effects, ranging from quantum mechanics/molecular mechanics (QM/MM) to quantum embedding approaches. In particular, we consider non-polarizable and polarizable QM/MM methods, the latter based on the fluctuating charge (FQ) force field. In addition, we use a quantum embedding method defined in the context of multilevel Hartree-Fock (MLHF), where the system is divided into active and inactive regions, and combine it with a third layer described by means of the FQ model. The multiscale approaches are then used as reference wave functions for equation-of-motion coupled cluster (EOM-CC) response properties, allowing for the account of electron correlation. The developed models are applied to the calculation of linear response properties of two organic moieties—namely, para-nitroaniline and benzonitrile—in non-aqueous solvents—1,4-dioxane, acetonitrile, and tetrahydrofuran. The computed polarizabilities are then discussed in terms of the physico-chemical solute-solvent interactions described by each method (electrostatic, polarization and Pauli repulsion), and finally compared with the available experimental references.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
English
Con Impact Factor ISI
Nonlinear-optical-properties
frequency-dependent polarizabilities
coupled-cluster calculations
density-functional-theory
self-consistent-field
ab-initio
molecular-properties
chiroptical properties
electronic-spectra
Goletto, L., Gomez, S., Andersen, J.h., Koch, H., Giovannini, T. (2022). Linear response properties of solvated systems: a computational study. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 24(45), 27866-27878 [10.1039/d2cp04512e].
Goletto, L; Gomez, S; Andersen, Jh; Koch, H; Giovannini, T
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
revised.pdf

Open Access dal 07/11/2023

Descrizione: Accepted Version
Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/393368
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact