Raman and Raman Optical Activity (ROA) signals are amply affected by solvent effects, especially in the presence of strongly solute-solvent interactions such as Hydrogen Bonding (HB). In this work, we extend the fully atomistic polarizable Quantum Mechanics/Molecular Mechanics approach, based on the Fluctuating Charges and Fluctuating Dipoles force field to the calculation of Raman and ROA spectra. Such an approach is able to accurately describe specific HB interactions, by also accounting for anisotropic contributions due to the inclusion of fluctuating dipoles. To highlight the potentiality of the novel approach, Raman and ROA spectra of L-Serine and L-Cysteine dissolved in aqueous solution are computed and compared both with alternative theoretical approaches and experimental measurements.
Sepali, C., Lafiosca, P., Gómez, S., Giovannini, T., Cappelli, C. (2023). Effective fully polarizable QM/MM approaches to compute Raman and Raman Optical Activity spectra in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 305 [10.1016/j.saa.2023.123485].
Effective fully polarizable QM/MM approaches to compute Raman and Raman Optical Activity spectra in aqueous solution
Giovannini, Tommaso;
2023-01-01
Abstract
Raman and Raman Optical Activity (ROA) signals are amply affected by solvent effects, especially in the presence of strongly solute-solvent interactions such as Hydrogen Bonding (HB). In this work, we extend the fully atomistic polarizable Quantum Mechanics/Molecular Mechanics approach, based on the Fluctuating Charges and Fluctuating Dipoles force field to the calculation of Raman and ROA spectra. Such an approach is able to accurately describe specific HB interactions, by also accounting for anisotropic contributions due to the inclusion of fluctuating dipoles. To highlight the potentiality of the novel approach, Raman and ROA spectra of L-Serine and L-Cysteine dissolved in aqueous solution are computed and compared both with alternative theoretical approaches and experimental measurements.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1386142523011708-main.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.56 MB
Formato
Adobe PDF
|
2.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.