We show that for a large class of varieties of algebras, the equational theory of the congruence lattices of the members is not finitely based.

Freese, R., Lipparini, P. (2024). Finitely based congruence varieties. ALGEBRA UNIVERSALIS, 85(1) [10.1007/s00012-023-00840-6].

Finitely based congruence varieties

Lipparini, Paolo
2024-01-01

Abstract

We show that for a large class of varieties of algebras, the equational theory of the congruence lattices of the members is not finitely based.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-02/A - Algebra
English
Con Impact Factor ISI
Congruence lattice; Congruence variety; Finite (equational) basis; Projective lattices; Higher Arguesian identities
https://arxiv.org/abs/2306.14396
Freese, R., Lipparini, P. (2024). Finitely based congruence varieties. ALGEBRA UNIVERSALIS, 85(1) [10.1007/s00012-023-00840-6].
Freese, R; Lipparini, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/392445
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact