We say that an idempotent term t is an exact-m-majority term if t evaluates to a, whenever the element a occurs exactly m times in the arguments of t, and all the other arguments are equal.If m < n and some variety V has an n-ary exact-m-majority term, then V is congruence modular. For certain values of n and m, for example, n = 5 and m = 3, the existence of an n-ary exact-m-majority term neither implies congruence distributivity, nor congruence permutability.

Lipparini, P. (2024). Exact-m-majority terms. MATHEMATICA SLOVACA, 74(2), 293-298 [10.1515/ms-2024-0022].

Exact-m-majority terms

Lipparini, Paolo
2024-01-01

Abstract

We say that an idempotent term t is an exact-m-majority term if t evaluates to a, whenever the element a occurs exactly m times in the arguments of t, and all the other arguments are equal.If m < n and some variety V has an n-ary exact-m-majority term, then V is congruence modular. For certain values of n and m, for example, n = 5 and m = 3, the existence of an n-ary exact-m-majority term neither implies congruence distributivity, nor congruence permutability.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-02/A - Algebra
English
Con Impact Factor ISI
m-majority term
near-unanimity term
minority term
congruence distributive variety
congruence modular variety
congruence permutable variety
https://arxiv.org/abs/2209.12088
Lipparini, P. (2024). Exact-m-majority terms. MATHEMATICA SLOVACA, 74(2), 293-298 [10.1515/ms-2024-0022].
Lipparini, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/392444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact