We show that, under suitably general formulations, covering properties, accumulation properties and filter convergence are all equivalent notions. This general correspondence is exemplified in the study of products.We prove that a product is Lindelof if and only if all subproducts by <= omega(1) factors are Lindelof. Parallel results are obtained for final omega(n)-compactness, [lambda, mu]-compactness, the Menger and the Rothberger properties.

Lipparini, P. (2023). Products of topological spaces and families of filters. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 64(3), 373-394 [10.14712/1213-7243.2024.005].

Products of topological spaces and families of filters

Paolo, Lipparini
2023-01-01

Abstract

We show that, under suitably general formulations, covering properties, accumulation properties and filter convergence are all equivalent notions. This general correspondence is exemplified in the study of products.We prove that a product is Lindelof if and only if all subproducts by <= omega(1) factors are Lindelof. Parallel results are obtained for final omega(n)-compactness, [lambda, mu]-compactness, the Menger and the Rothberger properties.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-02/B - Geometria
English
Con Impact Factor ISI
filter convergence
ultrafilter
product
subproduct
sequential compactness
sequencewise P-compactness
Lindelof property
final lambda-compactness
[mu, lambda]-compactness
Menger property
Rothberger property
https://arxiv.org/abs/1303.0815
Lipparini, P. (2023). Products of topological spaces and families of filters. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 64(3), 373-394 [10.14712/1213-7243.2024.005].
Lipparini, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/392443
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact