We provide a representation of the weak solution of the continuity equation on the Heisenberg group H^1 with periodic data (the periodicity is suitably adapted to the group law). This solution is the push forward of a measure concentrated on the flux associated with the drift of the continuity equation. Furthermore, we shall use this interpretation for proving that weak solutions to first order Mean Field Games on H^1 are also mild solutions.

Cutri', A., Mannucci, P., Marchi, C., Tchou, N. (2024). The continuity equation in the Heisenberg-periodic case: a representation formula and an application to Mean Field Games. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 31(5) [10.1007/s00030-024-00967-y].

The continuity equation in the Heisenberg-periodic case: a representation formula and an application to Mean Field Games

Alessandra Cutri';
2024-01-01

Abstract

We provide a representation of the weak solution of the continuity equation on the Heisenberg group H^1 with periodic data (the periodicity is suitably adapted to the group law). This solution is the push forward of a measure concentrated on the flux associated with the drift of the continuity equation. Furthermore, we shall use this interpretation for proving that weak solutions to first order Mean Field Games on H^1 are also mild solutions.
2024
Online ahead of print
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
periodic Mean Field Games; Heisenberg group; representation formula for the continuity equation on Heisenberg group
https://doi.org/10.1007/s00030-024-00967-y
Cutri', A., Mannucci, P., Marchi, C., Tchou, N. (2024). The continuity equation in the Heisenberg-periodic case: a representation formula and an application to Mean Field Games. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 31(5) [10.1007/s00030-024-00967-y].
Cutri', A; Mannucci, P; Marchi, C; Tchou, N
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
s00030-024-00967-y.pdf

solo utenti autorizzati

Descrizione: reprint
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 542.32 kB
Formato Adobe PDF
542.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/392114
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact