We study the Riemannian distance function from a fixed point (a point-wise target) of Euclidean space in the presence of a compact obstacle bounded by a smooth hypersurface. First, we show that such a function is locally semiconcave with a fractional modulus of order one half and that, near the obstacle, this regularity is optimal. Then, in the Euclidean setting, we prove that the singularities of the distance function propagate, in the sense that each singular point belongs to a nontrivial singular continuum. Finally, we investigate the lack of differentiability of the distance function when a convex obstacle is present.

Albano, P., Basco, V., Cannarsa, P. (2021). The distance function in the presence of an obstacle. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 61(1) [10.1007/s00526-021-02125-z].

The distance function in the presence of an obstacle

Vincenzo Basco;Piermarco Cannarsa
2021-01-01

Abstract

We study the Riemannian distance function from a fixed point (a point-wise target) of Euclidean space in the presence of a compact obstacle bounded by a smooth hypersurface. First, we show that such a function is locally semiconcave with a fractional modulus of order one half and that, near the obstacle, this regularity is optimal. Then, in the Euclidean setting, we prove that the singularities of the distance function propagate, in the sense that each singular point belongs to a nontrivial singular continuum. Finally, we investigate the lack of differentiability of the distance function when a convex obstacle is present.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
49J52
26A27
26B25
49L2
Albano, P., Basco, V., Cannarsa, P. (2021). The distance function in the presence of an obstacle. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 61(1) [10.1007/s00526-021-02125-z].
Albano, P; Basco, V; Cannarsa, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Alb-Bsc-PMC_CalcVarPDE.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 560.32 kB
Formato Adobe PDF
560.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/391430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact