Quadratic Unconstrained Binary Optimization (QUBO or UBQP) is concerned with maximizing/minimizing the quadratic form H(J,eta)=W & sum;(i,j)J(i,j)eta(i)eta(j )with J a matrix of coefficients, eta is an element of {0,1}(N) and W a normalizing constant. In the statistical mechanics literature, QUBO is a lattice gas counterpart to the (generalized) Sherrington-Kirkpatrick spin glass model. Finding the optima of H is an NP-hard problem. Several problems in combinatorial optimization and data analysis can be mapped to QUBO in a straightforward manner. In the combinatorial optimization literature, random instances of QUBO are often used to test the effectiveness of heuristic algorithms. Here we consider QUBO with random independent coefficients and show that if the J(i,j)'s have zero mean and finite variance then, after proper normalization, the minimum and maximum per particle of H do not depend on the details of the distribution of the couplings and are concentrated around their expected values. Further, with the help of numerical simulations, we study the minimum and maximum of the objective function and provide some insight into the structure of the minimizer and the maximizer of H. We argue that also this structure is rather robust. Our findings hold also in the diluted case where each of the J(i,j)'s is allowed to be zero with probability going to 1 as N ->infinity in a suitable way.

Isopi, M., Scoppola, B., Troiani, A. (2024). On some features of quadratic unconstrained binary optimization with random coefficients. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA [10.1007/s40574-024-00433-8].

On some features of quadratic unconstrained binary optimization with random coefficients

Scoppola B.;
2024-01-01

Abstract

Quadratic Unconstrained Binary Optimization (QUBO or UBQP) is concerned with maximizing/minimizing the quadratic form H(J,eta)=W & sum;(i,j)J(i,j)eta(i)eta(j )with J a matrix of coefficients, eta is an element of {0,1}(N) and W a normalizing constant. In the statistical mechanics literature, QUBO is a lattice gas counterpart to the (generalized) Sherrington-Kirkpatrick spin glass model. Finding the optima of H is an NP-hard problem. Several problems in combinatorial optimization and data analysis can be mapped to QUBO in a straightforward manner. In the combinatorial optimization literature, random instances of QUBO are often used to test the effectiveness of heuristic algorithms. Here we consider QUBO with random independent coefficients and show that if the J(i,j)'s have zero mean and finite variance then, after proper normalization, the minimum and maximum per particle of H do not depend on the details of the distribution of the couplings and are concentrated around their expected values. Further, with the help of numerical simulations, we study the minimum and maximum of the objective function and provide some insight into the structure of the minimizer and the maximizer of H. We argue that also this structure is rather robust. Our findings hold also in the diluted case where each of the J(i,j)'s is allowed to be zero with probability going to 1 as N ->infinity in a suitable way.
2024
Online ahead of print
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-03/B - Probabilità e statistica matematica
English
Con Impact Factor ISI
QUBO
UBQP
Probabilistic cellular automata
Spin glasses
Lattice gas
Combinatorial optimization
Isopi, M., Scoppola, B., Troiani, A. (2024). On some features of quadratic unconstrained binary optimization with random coefficients. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA [10.1007/s40574-024-00433-8].
Isopi, M; Scoppola, B; Troiani, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/391249
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact