Several G protein-coupled receptors function within lipid rafts plasma membrane microdomains, which may be important in limiting signal transduction. Here we show that treatment of rat C6 glioma cells with the raft disruptor methyl-beta-cyclodextrin (MCD) doubles the binding efficiency (i.e. the ratio between maximum binding and dissociation constant) of type-1 cannabinoid receptors (CB1R), which belong to the rhodopsin family of G protein-coupled receptors. In parallel, activation of CB1R by the endogenous agonist anandamide (AEA) leads to similar to 3-fold higher [S-35]GTP gamma S binding in MCD-treated cells than in controls, and CB1R-dependent signaling via adenylate cyclase, and p42/p44 MAPK is almost doubled by MCD. Unlike CB1R, the other AEA-binding receptor TRPV1, the AEA synthetase NAPE-PLD, and the AEA hydrolase FAAH are not modulated by MCD, whereas the activity of the AEA membrane transporter (AMT) is reduced to similar to 50% of the controls. We also show that MCD reduces dose-dependently AEA-induced apoptosis in C6 cells but not in human CHP100 neuroblastoma cells, which mirror the endocannabinoid system of C6 cells but are devoid of CB1R. MCD reduces also cytochrome c release from mitochondria of C6 cells, and this effect is CB1R-dependent and partly mediated by activation of p42/p44 MAPK. Altogether, the present data suggest that lipid rafts control CB1R binding and signaling, and that CB1R activation underlies the protective effect of MCD against apoptosis.

Bari, M., Battista, N., Fezza, F., FINAZZI AGRO', A., Maccarrone, M. (2005). Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells: Implications for anandamide-induced apoptosis. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 280(13), 12212-12220 [10.1074/jbc.M411642200].

Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells: Implications for anandamide-induced apoptosis

FEZZA, FILOMENA;FINAZZI AGRO', ALESSANDRO;
2005-01-01

Abstract

Several G protein-coupled receptors function within lipid rafts plasma membrane microdomains, which may be important in limiting signal transduction. Here we show that treatment of rat C6 glioma cells with the raft disruptor methyl-beta-cyclodextrin (MCD) doubles the binding efficiency (i.e. the ratio between maximum binding and dissociation constant) of type-1 cannabinoid receptors (CB1R), which belong to the rhodopsin family of G protein-coupled receptors. In parallel, activation of CB1R by the endogenous agonist anandamide (AEA) leads to similar to 3-fold higher [S-35]GTP gamma S binding in MCD-treated cells than in controls, and CB1R-dependent signaling via adenylate cyclase, and p42/p44 MAPK is almost doubled by MCD. Unlike CB1R, the other AEA-binding receptor TRPV1, the AEA synthetase NAPE-PLD, and the AEA hydrolase FAAH are not modulated by MCD, whereas the activity of the AEA membrane transporter (AMT) is reduced to similar to 50% of the controls. We also show that MCD reduces dose-dependently AEA-induced apoptosis in C6 cells but not in human CHP100 neuroblastoma cells, which mirror the endocannabinoid system of C6 cells but are devoid of CB1R. MCD reduces also cytochrome c release from mitochondria of C6 cells, and this effect is CB1R-dependent and partly mediated by activation of p42/p44 MAPK. Altogether, the present data suggest that lipid rafts control CB1R binding and signaling, and that CB1R activation underlies the protective effect of MCD against apoptosis.
2005
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore BIO/10 - BIOCHIMICA
English
Activation energy; Binding energy; Biological membranes; Cells; Enzymes; Living systems studies; Neurology; Proteins; Methyl-β-cyclodextrin (MCD); Plasma membranes; Receptors; Signal transduction; Lipids; adenylate cyclase; anandamide; cannabinoid 1 receptor; cannabinoid receptor; cytochrome c; endocannabinoid; G protein coupled receptor; hydrolase; methyl beta cyclodextrin; mitogen activated protein kinase 1; mitogen activated protein kinase 3; phosphatidylethanolamine; rhodopsin; animal cell; apoptosis; article; cell line; controlled study; dissociation constant; glioma cell; human; human cell; lipid raft; mitochondrion; nerve cell; neuroblastoma cell; nonhuman; priority journal; protein binding; protein expression; rat; Animals; Apoptosis; Arachidonic Acids; beta-Cyclodextrins; Biological Transport; Cell Line, Tumor; Cell Membrane; Cell Separation; Cholesterol; Cyclic AMP; Dose-Response Relationship, Drug; Endocannabinoids; Flow Cytometry; Glioma; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Hydrolysis; Kinetics; Lipid Metabolism; Lipids; Membrane Microdomains; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Neuroblastoma; Neurons; Polyunsaturated Alkamides; Protein Binding; Rats; Receptor, Cannabinoid, CB1; Receptors, Cannabinoid; Rhodopsin; Signal Transduction; Time Factors
Bari, M., Battista, N., Fezza, F., FINAZZI AGRO', A., Maccarrone, M. (2005). Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells: Implications for anandamide-induced apoptosis. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 280(13), 12212-12220 [10.1074/jbc.M411642200].
Bari, M; Battista, N; Fezza, F; FINAZZI AGRO', A; Maccarrone, M
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/39122
Citazioni
  • ???jsp.display-item.citation.pmc??? 82
  • Scopus 182
  • ???jsp.display-item.citation.isi??? 171
social impact