Coronal Mass Ejections (CMEs) are huge clouds of magnetised plasma expelled from the solar corona that can travel towards the Earth and cause significant space weather effects. The Drag-Based Model (DBM) describes the propagation of CMEs in an ambient solar wind as analogous to an aerodynamic drag. The drag-based approximation is popular because it is a simple analytical model that depends only on two parameters, the drag parameter gamma$ \gamma $ and the solar wind speed w$ w$. DBM thus allows us to obtain reliable estimates of CME transit time at low computational cost. Previous works proposed a probabilistic version of DBM, the Probabilistic Drag Based Model (P-DBM), which enables the evaluation of the uncertainties associated with the predictions. In this work, we infer the "a-posteriori" probability distribution functions (PDFs) of the gamma$ \gamma $ and w$ w$ parameters of the DBM by exploiting a well-established Bayesian inference technique: the Monte Carlo Markov Chains (MCMC) method. By utilizing this Bayesian method through two different approaches, an ensemble and an individual approach, we obtain specific DBM parameter PDFs for two ensembles of CMEs: those travelling with fast and slow solar wind, respectively. Subsequently, we assess the operational applicability of the model by forecasting the arrival time of CMEs. While the ensemble approach displays notable limitations, the individual approach yields promising results, demonstrating competitive performances compared to the current state-of-the-art, with a Mean Absolute Error (MAE) of 9.86 +/- 4.07 h achieved in the best-case scenario.

Chierichini, S., Francisco, G., Mugatwala, R., Foldes, R., Camporeale, E., DE GASPERIS, G., et al. (2024). A Bayesian approach to the drag-based modelling of ICMEs. JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 14 [10.1051/swsc/2023032].

A Bayesian approach to the drag-based modelling of ICMEs

Simone Chierichini
;
Gregoire Francisco;Ronish Mugatwala;Giancarlo De Gasperis;Luca Giovannelli;Gianluca Napoletano;Dario Del Moro;
2024-01-01

Abstract

Coronal Mass Ejections (CMEs) are huge clouds of magnetised plasma expelled from the solar corona that can travel towards the Earth and cause significant space weather effects. The Drag-Based Model (DBM) describes the propagation of CMEs in an ambient solar wind as analogous to an aerodynamic drag. The drag-based approximation is popular because it is a simple analytical model that depends only on two parameters, the drag parameter gamma$ \gamma $ and the solar wind speed w$ w$. DBM thus allows us to obtain reliable estimates of CME transit time at low computational cost. Previous works proposed a probabilistic version of DBM, the Probabilistic Drag Based Model (P-DBM), which enables the evaluation of the uncertainties associated with the predictions. In this work, we infer the "a-posteriori" probability distribution functions (PDFs) of the gamma$ \gamma $ and w$ w$ parameters of the DBM by exploiting a well-established Bayesian inference technique: the Monte Carlo Markov Chains (MCMC) method. By utilizing this Bayesian method through two different approaches, an ensemble and an individual approach, we obtain specific DBM parameter PDFs for two ensembles of CMEs: those travelling with fast and slow solar wind, respectively. Subsequently, we assess the operational applicability of the model by forecasting the arrival time of CMEs. While the ensemble approach displays notable limitations, the individual approach yields promising results, demonstrating competitive performances compared to the current state-of-the-art, with a Mean Absolute Error (MAE) of 9.86 +/- 4.07 h achieved in the best-case scenario.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/06 - Fisica per il Sistema Terra e Il Mezzo Circumterrestre
Settore PHYS-05/B - Fisica del sistema Terra, dei pianeti, dello spazio e del clima
English
Con Impact Factor ISI
Coronal Mass Ejections
Drag Based Model
Space weather
Chierichini, S., Francisco, G., Mugatwala, R., Foldes, R., Camporeale, E., DE GASPERIS, G., et al. (2024). A Bayesian approach to the drag-based modelling of ICMEs. JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 14 [10.1051/swsc/2023032].
Chierichini, S; Francisco, G; Mugatwala, R; Foldes, R; Camporeale, E; DE GASPERIS, G; Giovannelli, L; Napoletano, G; DEL MORO, D; Erdelyi, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
swsc230044.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/391028
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact