In 1920, P. A. MacMahon generalized the (classical) notion of divisor sums by relating it to the theory of partitions of integers. In this paper, we extend the idea of MacMahon. In doing so, we reveal a wealth of divisibility theorems and unexpected combinatorial identities. Our initial approach is quite different from MacMahon and involves rational function approximation to MacMahon-type generating functions. One such example involves multiple q-harmonic sums

Amdeberhan, T., Andrews, G.e., Tauraso, R. (2024). Extensions of MacMahon's sums of divisors. RESEARCH IN THE MATHEMATICAL SCIENCES, 11 [10.1007/s40687-024-00421-6].

Extensions of MacMahon's sums of divisors

Roberto Tauraso
2024-01-01

Abstract

In 1920, P. A. MacMahon generalized the (classical) notion of divisor sums by relating it to the theory of partitions of integers. In this paper, we extend the idea of MacMahon. In doing so, we reveal a wealth of divisibility theorems and unexpected combinatorial identities. Our initial approach is quite different from MacMahon and involves rational function approximation to MacMahon-type generating functions. One such example involves multiple q-harmonic sums
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
q-harmonic sums; Generalized sums of divisors; Quasi-modular forms
https://link.springer.com/article/10.1007/s40687-024-00421-6
Amdeberhan, T., Andrews, G.e., Tauraso, R. (2024). Extensions of MacMahon's sums of divisors. RESEARCH IN THE MATHEMATICAL SCIENCES, 11 [10.1007/s40687-024-00421-6].
Amdeberhan, T; Andrews, Ge; Tauraso, R
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/391003
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact