In this paper we study the second integral cohomology of moduli spaces of semistable sheaves on projective K3 surfaces. If S is a projective K3 surface, v a Mukai vector and H a polarization on S that is general with respect to v, we show that H2(Mv, Z) is a free Z -module of rank 23 carrying a pure weight -two Hodge structure and a lattice structure, with respect to which H2(Mv,Z) is Hodge isometric to the Hodge sublattice v perpendicular to of the Mukai lattice of S. Similar results are proved for Abelian surfaces. (c) 2024 Elsevier Inc. All rights reserved.

Perego, A., Rapagnetta, A. (2024). The second integral cohomology of moduli spaces of sheaves on K3 and Abelian surfaces. ADVANCES IN MATHEMATICS, 440 [10.1016/j.aim.2024.109519].

The second integral cohomology of moduli spaces of sheaves on K3 and Abelian surfaces

Rapagnetta, Antonio
2024-01-01

Abstract

In this paper we study the second integral cohomology of moduli spaces of semistable sheaves on projective K3 surfaces. If S is a projective K3 surface, v a Mukai vector and H a polarization on S that is general with respect to v, we show that H2(Mv, Z) is a free Z -module of rank 23 carrying a pure weight -two Hodge structure and a lattice structure, with respect to which H2(Mv,Z) is Hodge isometric to the Hodge sublattice v perpendicular to of the Mukai lattice of S. Similar results are proved for Abelian surfaces. (c) 2024 Elsevier Inc. All rights reserved.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03
Settore MATH-02/B - Geometria
English
Con Impact Factor ISI
Moduli spaces of sheaves
K3 surfaces
Irreducible symplectic varieties
Perego, A., Rapagnetta, A. (2024). The second integral cohomology of moduli spaces of sheaves on K3 and Abelian surfaces. ADVANCES IN MATHEMATICS, 440 [10.1016/j.aim.2024.109519].
Perego, A; Rapagnetta, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0001870824000343-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/390956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact