We mainly determine Sigma(p-1)(k=1) (k(2k))h(k)x(k) modulo a prime p with h(k) = Sigma(k)(j=1) 1/2j-1. We 1 also provide some applications of this polynomial congruence for some special values of x which involve the Fibonacci and Lucas numbers.

Tauraso, R. (2023). More Congruences for Central Binomial Sums with Fibonacci and Lucas Numbers. JOURNAL OF INTEGER SEQUENCES, 26, 1-10.

More Congruences for Central Binomial Sums with Fibonacci and Lucas Numbers

Roberto Tauraso
2023-01-01

Abstract

We mainly determine Sigma(p-1)(k=1) (k(2k))h(k)x(k) modulo a prime p with h(k) = Sigma(k)(j=1) 1/2j-1. We 1 also provide some applications of this polynomial congruence for some special values of x which involve the Fibonacci and Lucas numbers.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
congruence; central binomial coefficient; harmonic number; Fibonacci number; Lucas number
https://cs.uwaterloo.ca/journals/JIS/VOL26/Tauraso/tauraso56.html
Tauraso, R. (2023). More Congruences for Central Binomial Sums with Fibonacci and Lucas Numbers. JOURNAL OF INTEGER SEQUENCES, 26, 1-10.
Tauraso, R
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/390585
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact