In this work, we explore the effect of ultrahigh tensile strain on electrical transport properties of silicon. By integrating vapor–liquid–solid-grown nanowires into a micromechanical straining device, we demonstrate uniaxial tensile strain levels up to 9.5%. Thereby the triply degenerated phonon dispersion relation at the Γ-point of silicon disentangle and the longitudinal phonon modes are used to precisely determine the extent of mechanical strain. Simultaneous electrical transport measurements showed a significant enhancement in the electrical conductance. Aside from considerable reduction of the Si bulk resistivity due to strain-induced band gap narrowing, comparison with quasi-particle GW calculations further reveals that the effective Schottky barrier height at the electrical contacts undergoes a substantial reduction. For these reasons, nanowire devices with ultrastrained channels may be promising candidates for future applications of high-performance silicon-based devices.
Bartmann, M.g., Glassner, S., Sistani, M., Rurali, R., Palummo, M., Cartoixà, X., et al. (2024). Electronic Transport Modulation in Ultrastrained Silicon Nanowire Devices. ACS APPLIED MATERIALS & INTERFACES, 16(26), 33789-33795 [10.1021/acsami.4c05477].
Electronic Transport Modulation in Ultrastrained Silicon Nanowire Devices
Maurizia Palummo;
2024-06-30
Abstract
In this work, we explore the effect of ultrahigh tensile strain on electrical transport properties of silicon. By integrating vapor–liquid–solid-grown nanowires into a micromechanical straining device, we demonstrate uniaxial tensile strain levels up to 9.5%. Thereby the triply degenerated phonon dispersion relation at the Γ-point of silicon disentangle and the longitudinal phonon modes are used to precisely determine the extent of mechanical strain. Simultaneous electrical transport measurements showed a significant enhancement in the electrical conductance. Aside from considerable reduction of the Si bulk resistivity due to strain-induced band gap narrowing, comparison with quasi-particle GW calculations further reveals that the effective Schottky barrier height at the electrical contacts undergoes a substantial reduction. For these reasons, nanowire devices with ultrastrained channels may be promising candidates for future applications of high-performance silicon-based devices.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.