Consider a locally Lipschitz function u on the closure of a possibly unbounded open subset Omega of R-n with nonempty boundary. Suppose u is (locally) semiconcave on Omega with a fractional semiconcavity modulus. Is it possible to extend u in a neighborhood of any boundary point retaining the same semiconcavity modulus? We show that this is indeed the case and we give two applications of this extension property. First, we derive an approximation result for semiconcave functions on closed domains. Then, we use the above extension property to study the propagation of singularities of semiconcave functions at boundary points. (C) 2021 Elsevier Ltd. All rights reserved.

Albano, P., Basco, V., Cannarsa, P. (2022). On the extension problem for semiconcave functions with fractional modulus. NONLINEAR ANALYSIS, 216 [10.1016/j.na.2021.112669].

On the extension problem for semiconcave functions with fractional modulus

Vincenzo Basco;Piermarco Cannarsa
2022-01-01

Abstract

Consider a locally Lipschitz function u on the closure of a possibly unbounded open subset Omega of R-n with nonempty boundary. Suppose u is (locally) semiconcave on Omega with a fractional semiconcavity modulus. Is it possible to extend u in a neighborhood of any boundary point retaining the same semiconcavity modulus? We show that this is indeed the case and we give two applications of this extension property. First, we derive an approximation result for semiconcave functions on closed domains. Then, we use the above extension property to study the propagation of singularities of semiconcave functions at boundary points. (C) 2021 Elsevier Ltd. All rights reserved.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
Semiconcave functions
Extension
Approximation
Singularities
Albano, P., Basco, V., Cannarsa, P. (2022). On the extension problem for semiconcave functions with fractional modulus. NONLINEAR ANALYSIS, 216 [10.1016/j.na.2021.112669].
Albano, P; Basco, V; Cannarsa, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
NLA-S-20-01273_R1.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 300.48 kB
Formato Adobe PDF
300.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/389747
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact