In this paper self-sensing nanocomposite formulations made of acrylonitrile butadiene styrene and different loading (3, 5 and 10 wt%) of multi-walled carbon nanotubes have been produced and 3D printed via fused filament fabrication. The nanocomposites have been characterized from a rheological, mechanical, thermal and electrical point of view to assess the strain-sensing properties. All the samples show a piezoresistive behaviour and the electrical resistance changes when a stress is applied. The gauge factor, measure of the sensitivity, for ABS 3CNT, ABS 5CNT and ABS 10CNT are 11.36, 3.21 and 1.62, respectively. The ABS 3CNT samples have shown the best self-sensing performances with high sensitivity and this formulation has been used for producing a health-monitoring 3D-printed smart structure where the active material is placed locally in the structure. The 3D-printed structure itself is able to monitor the strain and hence the stress level to which is subjected with a gauge factor of 1.5. A finite element analysis helps to explain the reason for reduced sensitivity namely the placement of the sensing layer.

Paleari, L., Bragaglia, M., Mariani, M., Nanni, F. (2023). Acrylonitrile butadiene styrene – carbon nanotubes nanocomposites for 3D printing of health monitoring components. JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 42(17-18), 857-870 [10.1177/07316844221141364].

Acrylonitrile butadiene styrene – carbon nanotubes nanocomposites for 3D printing of health monitoring components

Paleari, Lorenzo;Bragaglia, Mario;Mariani, Matteo;Nanni, Francesca
2023-01-01

Abstract

In this paper self-sensing nanocomposite formulations made of acrylonitrile butadiene styrene and different loading (3, 5 and 10 wt%) of multi-walled carbon nanotubes have been produced and 3D printed via fused filament fabrication. The nanocomposites have been characterized from a rheological, mechanical, thermal and electrical point of view to assess the strain-sensing properties. All the samples show a piezoresistive behaviour and the electrical resistance changes when a stress is applied. The gauge factor, measure of the sensitivity, for ABS 3CNT, ABS 5CNT and ABS 10CNT are 11.36, 3.21 and 1.62, respectively. The ABS 3CNT samples have shown the best self-sensing performances with high sensitivity and this formulation has been used for producing a health-monitoring 3D-printed smart structure where the active material is placed locally in the structure. The 3D-printed structure itself is able to monitor the strain and hence the stress level to which is subjected with a gauge factor of 1.5. A finite element analysis helps to explain the reason for reduced sensitivity namely the placement of the sensing layer.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/22
Settore IMAT-01/A - Scienza e tecnologia dei materiali
English
Health monitoring
Polymeric nanocomposites
3D printing
Paleari, L., Bragaglia, M., Mariani, M., Nanni, F. (2023). Acrylonitrile butadiene styrene – carbon nanotubes nanocomposites for 3D printing of health monitoring components. JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 42(17-18), 857-870 [10.1177/07316844221141364].
Paleari, L; Bragaglia, M; Mariani, M; Nanni, F
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/389336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact