The problem -Delta u + a(epsilon)(x)u = u(N+2/N-2-epsilon), epsilon > 0, with boundary Dirichlet zero data is considered in an exterior domain Omega subset of R-N Assuming that, as epsilon -> 0, a(epsilon) concentrates and blows up at a point of Omega, namely a(epsilon)(x) = a(0) + 1/(epsilon)2aa (x-x(0/)epsilon(a))alpha is an element of R+\{0}, x(0) is an element of Omega, the existence of at least 2 distinct positive solutions is proved, if vertical bar a vertical bar(LN/2) is suitably small. Furthermore, if a(epsilon) (x) has a Suitable behaviour at infinity, the existence of another positive solution is shown.

Cerami, G., Molle, R. (2006). Multiple positive solutions for nonautonomous quasicritical elliptic problems in unbounded domains. ADVANCED NONLINEAR STUDIES, 6(2), 233-254.

Multiple positive solutions for nonautonomous quasicritical elliptic problems in unbounded domains

MOLLE, RICCARDO
2006-01-01

Abstract

The problem -Delta u + a(epsilon)(x)u = u(N+2/N-2-epsilon), epsilon > 0, with boundary Dirichlet zero data is considered in an exterior domain Omega subset of R-N Assuming that, as epsilon -> 0, a(epsilon) concentrates and blows up at a point of Omega, namely a(epsilon)(x) = a(0) + 1/(epsilon)2aa (x-x(0/)epsilon(a))alpha is an element of R+\{0}, x(0) is an element of Omega, the existence of at least 2 distinct positive solutions is proved, if vertical bar a vertical bar(LN/2) is suitably small. Furthermore, if a(epsilon) (x) has a Suitable behaviour at infinity, the existence of another positive solution is shown.
2006
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
exterior domains; quasicritical nonlinearities
Cerami, G., Molle, R. (2006). Multiple positive solutions for nonautonomous quasicritical elliptic problems in unbounded domains. ADVANCED NONLINEAR STUDIES, 6(2), 233-254.
Cerami, G; Molle, R
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/38914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact