V. L. Popov has recently introduced an analogue of Jordan classes (packets or decomposition classes) for the action of a theta-group (G(0), V), showing that they are finitely-many, locally-closed, irreducible unions of G(0)-orbits of constant dimension partitioning V. We carry out a local study of their closures showing that Jordan classes are smooth and that their closure is a union of Jordan classes. We parametrize Jordan classes and G(0)-orbits in a given class in terms of the action of subgroups of Vinberg's little Weyl group, and include several examples and counterexamples underlying the differences with the symmetric case and the critical issues arising in the theta-situation.

Carnovale, G., Esposito, F., Santi, A. (2023). ON JORDAN CLASSES FOR VINBERG’S θ-GROUPS. TRANSFORMATION GROUPS, 28(1), 151-183 [10.1007/s00031-021-09675-8].

ON JORDAN CLASSES FOR VINBERG’S θ-GROUPS

SANTI, ANDREA
2023-03-01

Abstract

V. L. Popov has recently introduced an analogue of Jordan classes (packets or decomposition classes) for the action of a theta-group (G(0), V), showing that they are finitely-many, locally-closed, irreducible unions of G(0)-orbits of constant dimension partitioning V. We carry out a local study of their closures showing that Jordan classes are smooth and that their closure is a union of Jordan classes. We parametrize Jordan classes and G(0)-orbits in a given class in terms of the action of subgroups of Vinberg's little Weyl group, and include several examples and counterexamples underlying the differences with the symmetric case and the critical issues arising in the theta-situation.
mar-2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02
Settore MATH-02/A - Algebra
English
Con Impact Factor ISI
Carnovale, G., Esposito, F., Santi, A. (2023). ON JORDAN CLASSES FOR VINBERG’S θ-GROUPS. TRANSFORMATION GROUPS, 28(1), 151-183 [10.1007/s00031-021-09675-8].
Carnovale, G; Esposito, F; Santi, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
On Jordan classes for Vinberg’s theta-groups.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 449.79 kB
Formato Adobe PDF
449.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/388039
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact