Abstract. We analyze attainable sets of single-input bilinear conservative systems with piecewise constant controls. Under the assumption that the ambient space admits a Hilbert basis made of eigenvectors of the drift operator, we show that the closure of the attainable set does not depend on the set of admissible controls, provided the controls can take at least two or three values.

Boussaïd, N., Caponigro, M., Chambrion, T. (2024). Switching Controls for Conservative Bilinear Quantum Systems with Discrete Spectrum. SIAM JOURNAL ON CONTROL AND OPTIMIZATION [10.1137/23M1588494].

Switching Controls for Conservative Bilinear Quantum Systems with Discrete Spectrum

Caponigro, Marco;
2024-01-01

Abstract

Abstract. We analyze attainable sets of single-input bilinear conservative systems with piecewise constant controls. Under the assumption that the ambient space admits a Hilbert basis made of eigenvectors of the drift operator, we show that the closure of the attainable set does not depend on the set of admissible controls, provided the controls can take at least two or three values.
2024
Online ahead of print
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
https://doi.org/10.1137/23M1588494
Boussaïd, N., Caponigro, M., Chambrion, T. (2024). Switching Controls for Conservative Bilinear Quantum Systems with Discrete Spectrum. SIAM JOURNAL ON CONTROL AND OPTIMIZATION [10.1137/23M1588494].
Boussaïd, N; Caponigro, M; Chambrion, T
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
23m1588494.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 378.5 kB
Formato Adobe PDF
378.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/386063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact