Granulosa cells (GCs) play crucial roles in oocyte maturation. Through gap junctions and extracellular vesicles, they mediate the exchange of molecules such as microRNAs and messenger RNAs. Different ovarian cell types exhibit unique gene expression profiles, reflecting their specialized functions and stages. By combining RNA-seq data from various cell types forming the follicle, we aimed at capturing a wide range of expression patterns, offering insights into the functional diversity and complexity of the transcriptome regulation across GCs. Herein, we performed an integrated bioinformatics analysis of RNA sequencing datasets present in public databases, with a unique and standardized workflow., By combining the data from different studies, we successfully increased the robustness and reliability of our findings and discovered novel genes, miRNAs, and signaling pathways associated with GCs function and oocyte maturation. Moreover, our results provide a valuable resource for further wet-lab research on GCs biology and their impact on oocyte development and competence.
Dhori, X., Gioiosa, S., Gonfloni, S. (2024). An integrated analysis of multiple datasets reveals novel gene signatures in human granulosa cells. SCIENTIFIC DATA, 11(1) [10.1038/s41597-024-03715-0].
An integrated analysis of multiple datasets reveals novel gene signatures in human granulosa cells
Xhulio DhoriInvestigation
;Stefania Gonfloni
Supervision
2024-09-06
Abstract
Granulosa cells (GCs) play crucial roles in oocyte maturation. Through gap junctions and extracellular vesicles, they mediate the exchange of molecules such as microRNAs and messenger RNAs. Different ovarian cell types exhibit unique gene expression profiles, reflecting their specialized functions and stages. By combining RNA-seq data from various cell types forming the follicle, we aimed at capturing a wide range of expression patterns, offering insights into the functional diversity and complexity of the transcriptome regulation across GCs. Herein, we performed an integrated bioinformatics analysis of RNA sequencing datasets present in public databases, with a unique and standardized workflow., By combining the data from different studies, we successfully increased the robustness and reliability of our findings and discovered novel genes, miRNAs, and signaling pathways associated with GCs function and oocyte maturation. Moreover, our results provide a valuable resource for further wet-lab research on GCs biology and their impact on oocyte development and competence.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.