We present a counterexample to the conjecture on the homotopy invariance of configuration spaces. More precisely, we consider the lens spaces L-7,L-1 and L-7,L-2, and prove that their configuration spaces are not homotopy equivalent by showing that their universal coverings have different Massey products. (C) 2004 Elsevier Ltd. All rights reserved.

Longoni, R., Salvatore, P. (2005). Configuration spaces are not homotopy invariant. TOPOLOGY, 44(2), 375-380 [10.1016/j.top.2004.11.002].

Configuration spaces are not homotopy invariant

SALVATORE, PAOLO
2005-01-01

Abstract

We present a counterexample to the conjecture on the homotopy invariance of configuration spaces. More precisely, we consider the lens spaces L-7,L-1 and L-7,L-2, and prove that their configuration spaces are not homotopy equivalent by showing that their universal coverings have different Massey products. (C) 2004 Elsevier Ltd. All rights reserved.
2005
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/03 - GEOMETRIA
English
Configuration spaces; Massey products
Longoni, R., Salvatore, P. (2005). Configuration spaces are not homotopy invariant. TOPOLOGY, 44(2), 375-380 [10.1016/j.top.2004.11.002].
Longoni, R; Salvatore, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/38321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 36
social impact