Nerve agents have recently been used in battlefield operations, espionage wars, and terrorist attacks. These compounds, like some pesticides, cause organophosphate poisoning. The rapid, noncontact detection of a sarin simulant in the liquid phase has been demonstrated at the Diagnostics and Metrology Laboratory of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development using laser photoacoustic spectroscopy, an infrared absorption technology. The first measurements, carried out with an experimental system based on a quantum cascade laser and developed for the assessment of food authenticity in the "fingerprint region", show that a detection limit of one nanolitre is within the reach of the instrument when chemometric analysis is applied.
Fiorani, L., Ciceroni, C., Giardina, I., Pollastrone, F. (2023). Rapid non-contact detection of chemical warfare agents by laser photoacoustic spectroscopy. SENSORS, 24(1) [10.3390/s24010201].
Rapid non-contact detection of chemical warfare agents by laser photoacoustic spectroscopy
Ciceroni C.;Pollastrone F.
2023-12-29
Abstract
Nerve agents have recently been used in battlefield operations, espionage wars, and terrorist attacks. These compounds, like some pesticides, cause organophosphate poisoning. The rapid, noncontact detection of a sarin simulant in the liquid phase has been demonstrated at the Diagnostics and Metrology Laboratory of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development using laser photoacoustic spectroscopy, an infrared absorption technology. The first measurements, carried out with an experimental system based on a quantum cascade laser and developed for the assessment of food authenticity in the "fingerprint region", show that a detection limit of one nanolitre is within the reach of the instrument when chemometric analysis is applied.File | Dimensione | Formato | |
---|---|---|---|
sensors-24-00201-v2.pdf
accesso aperto
Descrizione: manuscript
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.8 MB
Formato
Adobe PDF
|
3.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.