Consider a holomorphic map F:D -> G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F: D \rightarrow G$$\end{document} between two domains in CN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}<^>N$$\end{document}. Let F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document} denote a family of geodesics for the Kobayashi distance, such that F acts as an isometry on each element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document}. This paper is dedicated to characterizing the scenarios in which the aforementioned condition implies that F is a biholomorphism. Specifically, we establish this when D is a complete hyperbolic domain, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document} comprises all geodesic segments originating from a specific point. Another case is when D and G are C2+alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{2+\alpha }$$\end{document}-smooth bounded pseudoconvex domains, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document} consists of all geodesic rays converging at a designated boundary point of D. Furthermore, we provide examples to demonstrate that these assumptions are essentially optimal.

Bracci, F., Kosiński, Ł., Zwonek, W. (2024). Holomorphic maps acting as Kobayashi isometries on a family of geodesics. MATHEMATISCHE ZEITSCHRIFT, 308(1) [10.1007/s00209-024-03569-7].

Holomorphic maps acting as Kobayashi isometries on a family of geodesics

Bracci, Filippo
;
2024-01-01

Abstract

Consider a holomorphic map F:D -> G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F: D \rightarrow G$$\end{document} between two domains in CN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}<^>N$$\end{document}. Let F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document} denote a family of geodesics for the Kobayashi distance, such that F acts as an isometry on each element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document}. This paper is dedicated to characterizing the scenarios in which the aforementioned condition implies that F is a biholomorphism. Specifically, we establish this when D is a complete hyperbolic domain, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document} comprises all geodesic segments originating from a specific point. Another case is when D and G are C2+alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{2+\alpha }$$\end{document}-smooth bounded pseudoconvex domains, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document} consists of all geodesic rays converging at a designated boundary point of D. Furthermore, we provide examples to demonstrate that these assumptions are essentially optimal.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03
English
Con Impact Factor ISI
Rigidity of holomorphic maps
Invariant metrics
Scaling methods
https://link.springer.com/epdf/10.1007/s00209-024-03569-7?sharing_token=3XuDlgqb_YGrhZ4gDWmD_Pe4RwlQNchNByi7wbcMAY59pIuP1tZUY3QILBdNgbrkKU_bl8blpYPS00h1SaXTlvGB9aBAUgoZqEueO-ErFbJ_0DGB7kqbSatQ66xCQNaNX7ThpWSv7WFN7mGVxXuA942lw8Bv_mUsxcHZUDyy5Jg=
Bracci, F., Kosiński, Ł., Zwonek, W. (2024). Holomorphic maps acting as Kobayashi isometries on a family of geodesics. MATHEMATISCHE ZEITSCHRIFT, 308(1) [10.1007/s00209-024-03569-7].
Bracci, F; Kosiński, Ł; Zwonek, W
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
reprint Math Z.pdf

solo utenti autorizzati

Descrizione: reprint
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 297.93 kB
Formato Adobe PDF
297.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/380986
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact