Consider a holomorphic map F:D -> G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F: D \rightarrow G$$\end{document} between two domains in CN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}<^>N$$\end{document}. Let F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document} denote a family of geodesics for the Kobayashi distance, such that F acts as an isometry on each element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document}. This paper is dedicated to characterizing the scenarios in which the aforementioned condition implies that F is a biholomorphism. Specifically, we establish this when D is a complete hyperbolic domain, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document} comprises all geodesic segments originating from a specific point. Another case is when D and G are C2+alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{2+\alpha }$$\end{document}-smooth bounded pseudoconvex domains, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document} consists of all geodesic rays converging at a designated boundary point of D. Furthermore, we provide examples to demonstrate that these assumptions are essentially optimal.
Bracci, F., Kosiński, Ł., Zwonek, W. (2024). Holomorphic maps acting as Kobayashi isometries on a family of geodesics. MATHEMATISCHE ZEITSCHRIFT, 308(1) [10.1007/s00209-024-03569-7].
Holomorphic maps acting as Kobayashi isometries on a family of geodesics
Bracci, Filippo
;
2024-01-01
Abstract
Consider a holomorphic map F:D -> G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F: D \rightarrow G$$\end{document} between two domains in CN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}<^>N$$\end{document}. Let F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document} denote a family of geodesics for the Kobayashi distance, such that F acts as an isometry on each element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document}. This paper is dedicated to characterizing the scenarios in which the aforementioned condition implies that F is a biholomorphism. Specifically, we establish this when D is a complete hyperbolic domain, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document} comprises all geodesic segments originating from a specific point. Another case is when D and G are C2+alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{2+\alpha }$$\end{document}-smooth bounded pseudoconvex domains, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {F}}$$\end{document} consists of all geodesic rays converging at a designated boundary point of D. Furthermore, we provide examples to demonstrate that these assumptions are essentially optimal.File | Dimensione | Formato | |
---|---|---|---|
reprint Math Z.pdf
solo utenti autorizzati
Descrizione: reprint
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
297.93 kB
Formato
Adobe PDF
|
297.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.