We study how the existence of a negatively pinched Kähler metric on a domain in complex Euclidean space restricts the geometry of its boundary. In particular, we show that if a convex domain admits a complete Kähler metric, with pinched negative holomorphic bisectional curvature outside a compact set, then the boundary of the domain does not contain any complex subvariety of positive dimension. Moreover, if the boundary of the domain is smooth, then it is of finite type in the sense of D’Angelo. We also use curvature to provide a characterization of strong pseudoconvexity amongst convex domains. In particular, we show that a convex domain with Cˆ2,\alpha boundary is strongly pseudoconvex if and only if it admits a complete Kähler metric with sufficiently tight pinched negative holomorphic sectional curvature outside a compact set.

Bracci, F., Gaussier, H., Zimmer, A. (2024). The geometry of domains with negatively pinched Kähler metrics. JOURNAL OF DIFFERENTIAL GEOMETRY, 126(3), 909-938 [10.4310/jdg/1717348868].

The geometry of domains with negatively pinched Kähler metrics

Bracci, Filippo;
2024-01-01

Abstract

We study how the existence of a negatively pinched Kähler metric on a domain in complex Euclidean space restricts the geometry of its boundary. In particular, we show that if a convex domain admits a complete Kähler metric, with pinched negative holomorphic bisectional curvature outside a compact set, then the boundary of the domain does not contain any complex subvariety of positive dimension. Moreover, if the boundary of the domain is smooth, then it is of finite type in the sense of D’Angelo. We also use curvature to provide a characterization of strong pseudoconvexity amongst convex domains. In particular, we show that a convex domain with Cˆ2,\alpha boundary is strongly pseudoconvex if and only if it admits a complete Kähler metric with sufficiently tight pinched negative holomorphic sectional curvature outside a compact set.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03
English
Con Impact Factor ISI
finite type domains; Kähler metrics
https://projecteuclid.org/journals/journal-of-differential-geometry/volume-126/issue-3/The-geometry-of-domains-with-negatively-pinched-Kähler-metrics/10.4310/jdg/1717348868.short
Bracci, F., Gaussier, H., Zimmer, A. (2024). The geometry of domains with negatively pinched Kähler metrics. JOURNAL OF DIFFERENTIAL GEOMETRY, 126(3), 909-938 [10.4310/jdg/1717348868].
Bracci, F; Gaussier, H; Zimmer, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
JDG_126_03_A03-reprint.pdf

solo utenti autorizzati

Descrizione: reprint
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 396.95 kB
Formato Adobe PDF
396.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/380985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact