We introduce the notion of locally visible and locally Gromov hyperbolic domains in C^n. We prove that a bounded domain in C^n is locally visible and locally Gromov hyperbolic if and only if it is (globally) visible and Gromov hyperbolic with respect to the Kobayashi distance. This allows to detect, from local information near the boundary, those domains which are Gromov hyperbolic and for which biholomorphisms extend continuously up to the boundary.

Bracci, F., Gaussier, H., Nikolov, N., Thomas, P. (2024). Local and global visibility and Gromov hyperbolicity of domains with respect to the Kobayashi distance. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 377(1), 471-493 [10.1090/tran/9010].

Local and global visibility and Gromov hyperbolicity of domains with respect to the Kobayashi distance

Bracci, Filippo
;
2024-01-01

Abstract

We introduce the notion of locally visible and locally Gromov hyperbolic domains in C^n. We prove that a bounded domain in C^n is locally visible and locally Gromov hyperbolic if and only if it is (globally) visible and Gromov hyperbolic with respect to the Kobayashi distance. This allows to detect, from local information near the boundary, those domains which are Gromov hyperbolic and for which biholomorphisms extend continuously up to the boundary.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03
English
Con Impact Factor ISI
Gromov hyperbolic spaces
Kobayashi hyperbolic spaces
extension of holomorphic maps
localization
https://www.ams.org/journals/tran/2024-377-01/S0002-9947-2023-09010-9/S0002-9947-2023-09010-9.pdf
Bracci, F., Gaussier, H., Nikolov, N., Thomas, P. (2024). Local and global visibility and Gromov hyperbolicity of domains with respect to the Kobayashi distance. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 377(1), 471-493 [10.1090/tran/9010].
Bracci, F; Gaussier, H; Nikolov, N; Thomas, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
tran-2024.pdf

solo utenti autorizzati

Descrizione: reprint
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 332.93 kB
Formato Adobe PDF
332.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/380984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact