On any real semisimple Lie group we consider a one parameter family of left-invariant naturally reductive metrics. Their geodesic flow in terms of Killing curves, the Levi Civita connection and the main curvature properties are explicitly computed. Furthermore we present a group theoretical revisitation of a classical realization of all simply connected 3-dimensional manifolds with a transitive group of isometries due to L. Bianchi and \'E. Cartan. As a consequence one obtains a characterization of all naturally reductive left-invariant Riemannian metrics of $\,SL(2,\R)$.

Iannuzzi, A., Halverscheid, S. (2006). On Naturally reductive left-invariant metrics of SL(2,R). ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 5, 171-187.

On Naturally reductive left-invariant metrics of SL(2,R)

IANNUZZI, ANDREA;
2006-01-01

Abstract

On any real semisimple Lie group we consider a one parameter family of left-invariant naturally reductive metrics. Their geodesic flow in terms of Killing curves, the Levi Civita connection and the main curvature properties are explicitly computed. Furthermore we present a group theoretical revisitation of a classical realization of all simply connected 3-dimensional manifolds with a transitive group of isometries due to L. Bianchi and \'E. Cartan. As a consequence one obtains a characterization of all naturally reductive left-invariant Riemannian metrics of $\,SL(2,\R)$.
2006
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/03 - GEOMETRIA
English
Iannuzzi, A., Halverscheid, S. (2006). On Naturally reductive left-invariant metrics of SL(2,R). ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 5, 171-187.
Iannuzzi, A; Halverscheid, S
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/38038
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact