background: the cardiac surgery-associated acute kidney injury (CSA-AKI) occurs in up to 1 out of 3 patients. off-pump coronary artery bypass grafting (OPCABG) is one of the major cardiac surgeries leading to CSA-AKI. early identification and timely intervention are of clinical significance for CSA-AKI. In this study, we aimed to establish a prediction model of off-pump coronary artery bypass grafting-associated acute kidney injury (OPCABG-AKI) after surgery based on machine learning methods. methods: the preoperative and intraoperative data of 1,041 patients who underwent OPCABG in chest hospital, tianjin university from June 1, 2021 to april 30, 2023 were retrospectively collected. the definition of OPCABG-AKI was based on the 2012 kidney disease improving global outcomes (KDIGO) criteria. the baseline data and intraoperative time series data were included in the dataset, which were preprocessed separately. a total of eight machine learning models were constructed based on the baseline data: logistic regression (LR), gradient-boosting decision tree (GBDT), eXtreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), and decision tree (DT). the intraoperative time series data were extracted using a long short-term memory (LSTM) deep learning model. the baseline data and intraoperative features were then integrated through transfer learning and fused into each of the eight machine learning models for training. based on the calculation of accuracy and area under the curve (AUC) of the prediction model, the best model was selected to establish the final OPCABG-AKI risk prediction model. the importance of features was calculated and ranked by DT model, to identify the main risk factors. results: among 701 patients included in the study, 73 patients (10.4%) developed OPCABG-AKI. The GBDT model was shown to have the best predictions, both based on baseline data only (AUC =0.739, accuracy: 0.943) as well as based on baseline and intraoperative datasets (AUC =0.861, accuracy: 0.936). the ranking of importance of features of the GBDT model showed that use of insulin aspart was the most important predictor of OPCABG-AKI, followed by use of acarbose, spironolactone, alfentanil, dezocine, levosimendan, clindamycin, history of myocardial infarction, and gender. conclusions: A GBDT-based model showed excellent performance for the prediction of OPCABG-AKI. the fusion of preoperative and intraoperative data can improve the accuracy of predicting OPCABG-AKI.

Song, Y., Zhai, W., Ma, S., Wu, Y., Ren, M., Van den Eynde, J., et al. (2024). Machine learning-based prediction of off-pump coronary artery bypass grafting-associated acute kidney injury. JOURNAL OF THORACIC DISEASE, 16(7), 1535-1542 [10.21037/jtd-24-711].

Machine learning-based prediction of off-pump coronary artery bypass grafting-associated acute kidney injury

Paolo Nardi
Supervision
;
2024-01-01

Abstract

background: the cardiac surgery-associated acute kidney injury (CSA-AKI) occurs in up to 1 out of 3 patients. off-pump coronary artery bypass grafting (OPCABG) is one of the major cardiac surgeries leading to CSA-AKI. early identification and timely intervention are of clinical significance for CSA-AKI. In this study, we aimed to establish a prediction model of off-pump coronary artery bypass grafting-associated acute kidney injury (OPCABG-AKI) after surgery based on machine learning methods. methods: the preoperative and intraoperative data of 1,041 patients who underwent OPCABG in chest hospital, tianjin university from June 1, 2021 to april 30, 2023 were retrospectively collected. the definition of OPCABG-AKI was based on the 2012 kidney disease improving global outcomes (KDIGO) criteria. the baseline data and intraoperative time series data were included in the dataset, which were preprocessed separately. a total of eight machine learning models were constructed based on the baseline data: logistic regression (LR), gradient-boosting decision tree (GBDT), eXtreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), and decision tree (DT). the intraoperative time series data were extracted using a long short-term memory (LSTM) deep learning model. the baseline data and intraoperative features were then integrated through transfer learning and fused into each of the eight machine learning models for training. based on the calculation of accuracy and area under the curve (AUC) of the prediction model, the best model was selected to establish the final OPCABG-AKI risk prediction model. the importance of features was calculated and ranked by DT model, to identify the main risk factors. results: among 701 patients included in the study, 73 patients (10.4%) developed OPCABG-AKI. The GBDT model was shown to have the best predictions, both based on baseline data only (AUC =0.739, accuracy: 0.943) as well as based on baseline and intraoperative datasets (AUC =0.861, accuracy: 0.936). the ranking of importance of features of the GBDT model showed that use of insulin aspart was the most important predictor of OPCABG-AKI, followed by use of acarbose, spironolactone, alfentanil, dezocine, levosimendan, clindamycin, history of myocardial infarction, and gender. conclusions: A GBDT-based model showed excellent performance for the prediction of OPCABG-AKI. the fusion of preoperative and intraoperative data can improve the accuracy of predicting OPCABG-AKI.
2024
Pubblicato
Rilevanza internazionale
Articolo
Comitato scientifico
Settore MED/23
English
Con Impact Factor ISI
Lavoro multicentrico
Song, Y., Zhai, W., Ma, S., Wu, Y., Ren, M., Van den Eynde, J., et al. (2024). Machine learning-based prediction of off-pump coronary artery bypass grafting-associated acute kidney injury. JOURNAL OF THORACIC DISEASE, 16(7), 1535-1542 [10.21037/jtd-24-711].
Song, Y; Zhai, W; Ma, S; Wu, Y; Ren, M; Van den Eynde, J; Nardi, P; Pang, Pyk; Ali, Jm; Han, J; Guo, Z
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Song et al J THorac Dis 2024 jtd-16-07-4535.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 279.74 kB
Formato Adobe PDF
279.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/377843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact