We introduce a model of Poisson random waves in S2 and we study Quantitative Central Limit Theorems when both the rate of the Poisson process and the energy (i.e., frequency) of the waves (eigenfunctions) diverge to infinity. We consider finite -dimensional distributions, harmonic coefficients and convergence in law in functional spaces, and we investigate carefully the interplay between the rate of divergence of eigenvalues and Poisson governing measures.

Bourguin, S., Durastanti, C., Marinucci, D., Todino, A.p. (2024). Spherical Poisson waves. ELECTRONIC JOURNAL OF PROBABILITY, 29 [10.1214/23-ejp1071].

Spherical Poisson waves

Marinucci, Domenico
;
2024-01-01

Abstract

We introduce a model of Poisson random waves in S2 and we study Quantitative Central Limit Theorems when both the rate of the Poisson process and the energy (i.e., frequency) of the waves (eigenfunctions) diverge to infinity. We consider finite -dimensional distributions, harmonic coefficients and convergence in law in functional spaces, and we investigate carefully the interplay between the rate of divergence of eigenvalues and Poisson governing measures.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06
Settore MATH-03/B - Probabilità e statistica matematica
English
Con Impact Factor ISI
random spherical eigenfunctions
Poisson random fields
quantitative central limit theorems
Bourguin, S., Durastanti, C., Marinucci, D., Todino, A.p. (2024). Spherical Poisson waves. ELECTRONIC JOURNAL OF PROBABILITY, 29 [10.1214/23-ejp1071].
Bourguin, S; Durastanti, C; Marinucci, D; Todino, Ap
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
EJP2024.pdf

accesso aperto

Licenza: Creative commons
Dimensione 476.16 kB
Formato Adobe PDF
476.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/377665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact