In this paper, we show that the Lipschitz-Killing curvatures for the excursion sets of arithmetic random waves (toral Gaussian eigenfunctions) are dominated, in the high-frequency regime, by a single chaotic component. The latter can be written as a simple explicit function of the threshold parameter times the centered norm of these random fields; as a consequence, these geometric functionals are fully correlated in the high-energy limit. The derived formulae show a clear analogy with related results on the round unit sphere and suggest the existence of a general formula for geometric functionals of random eigenfunctions on Riemannian manifolds.

Cammarota, V., Marinucci, D., Rossi, M. (2023). Lipschitz-Killing curvatures for arithmetic random waves. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 24(2), 1095-1147 [10.2422/2036-2145.202010_065].

Lipschitz-Killing curvatures for arithmetic random waves

Marinucci, Domenico;
2023-01-01

Abstract

In this paper, we show that the Lipschitz-Killing curvatures for the excursion sets of arithmetic random waves (toral Gaussian eigenfunctions) are dominated, in the high-frequency regime, by a single chaotic component. The latter can be written as a simple explicit function of the threshold parameter times the centered norm of these random fields; as a consequence, these geometric functionals are fully correlated in the high-energy limit. The derived formulae show a clear analogy with related results on the round unit sphere and suggest the existence of a general formula for geometric functionals of random eigenfunctions on Riemannian manifolds.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06
English
Con Impact Factor ISI
Cammarota, V., Marinucci, D., Rossi, M. (2023). Lipschitz-Killing curvatures for arithmetic random waves. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 24(2), 1095-1147 [10.2422/2036-2145.202010_065].
Cammarota, V; Marinucci, D; Rossi, M
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/377663
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact