Plasma wakefield acceleration revolutionized the field of particle accelerators by generating gigavolt-per-centimeter fields. To compete with conventional radio-frequency (RF) accelerators, plasma technology must demonstrate operation at high repetition rates, with a recent research showing feasibility at megahertz levels using an Argon source that recovered after about 60 ns. Here we report about a proof-of-principle experiment that demonstrates the recovery of a Hydrogen plasma at the sub-nanosecond timescale. The result is obtained with a pump-and-probe setup and has been characterized for a wide range of plasma densities. We observed that large plasma densities reestablish their initial state soon after the injection of the pump beam ( < 0.7 ns). Conversely, at lower densities we observe the formation of a local dense plasma channel affecting the probe beam dynamics even at long delay times ( > 13 ns). The results are supported with numerical simulations and represent a step forward for the next-generation of compact high-repetition rate accelerators.
Pompili, R., Anania, M.p., Biagioni, A., Carillo, M., Chiadroni, E., Cianchi, A., et al. (2024). Recovery of hydrogen plasma at the sub-nanosecond timescale in a plasma-wakefield accelerator. COMMUNICATIONS PHYSICS, 7(1) [10.1038/s42005-024-01739-x].
Recovery of hydrogen plasma at the sub-nanosecond timescale in a plasma-wakefield accelerator
Cianchi, A.;Galletti, M.;Parise, G.;
2024-01-01
Abstract
Plasma wakefield acceleration revolutionized the field of particle accelerators by generating gigavolt-per-centimeter fields. To compete with conventional radio-frequency (RF) accelerators, plasma technology must demonstrate operation at high repetition rates, with a recent research showing feasibility at megahertz levels using an Argon source that recovered after about 60 ns. Here we report about a proof-of-principle experiment that demonstrates the recovery of a Hydrogen plasma at the sub-nanosecond timescale. The result is obtained with a pump-and-probe setup and has been characterized for a wide range of plasma densities. We observed that large plasma densities reestablish their initial state soon after the injection of the pump beam ( < 0.7 ns). Conversely, at lower densities we observe the formation of a local dense plasma channel affecting the probe beam dynamics even at long delay times ( > 13 ns). The results are supported with numerical simulations and represent a step forward for the next-generation of compact high-repetition rate accelerators.File | Dimensione | Formato | |
---|---|---|---|
2024_communication in physics.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.61 MB
Formato
Adobe PDF
|
3.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.