A series of direct numerical simulations in large computational domains has been performed in order to probe the spatial feature robustness of the Taylor rolls in turbulent Taylor-Couette flow. The latter is the flow between two coaxial independently rotating cylinders of radius r i and r o , respectively. Large axial aspect ratios Γ=7–8 [with Γ=L/(r o −r i ) , and L the axial length of the domain] and a simulation with Γ=14 were used in order to allow the system to select the most unstable wave number and to possibly develop multiple states. The radius ratio was taken as η=r i /r o =0.909 , the inner cylinder Reynolds number was fixed to Re i =3.4×10 4 , and the outer cylinder was kept stationary, resulting in a frictional Reynolds number of Re τ ≈500 , except for the Γ=14 simulation where Re i =1.5×10 4 and Re τ ≈240 . The large-scale rolls were found to remain axially pinned for all simulations. Depending on the initial conditions, stable solutions with different number of rolls n r and roll wavelength λ z were found for Γ=7 . The effect of λ z and n r on the statistics was quantified. The torque and mean flow statistics were found to be independent of both λ z and n r , while the velocity fluctuations and energy spectra showed some box-size dependence. Finally, the axial velocity spectra were found to have a very sharp dropoff for wavelengths larger than λ z , while for the small wavelengths they collapse.

Monico Rodolfo, O., Lohse, D., Verzicco, R. (2016). Effect of roll number on the statistics of turbulent Taylor-Couette flow. PHYSICAL REVIEW FLUIDS, 1(5), 054402 [10.1103/PhysRevFluids.1.054402].

Effect of roll number on the statistics of turbulent Taylor-Couette flow

Roberto Verzicco
2016-01-01

Abstract

A series of direct numerical simulations in large computational domains has been performed in order to probe the spatial feature robustness of the Taylor rolls in turbulent Taylor-Couette flow. The latter is the flow between two coaxial independently rotating cylinders of radius r i and r o , respectively. Large axial aspect ratios Γ=7–8 [with Γ=L/(r o −r i ) , and L the axial length of the domain] and a simulation with Γ=14 were used in order to allow the system to select the most unstable wave number and to possibly develop multiple states. The radius ratio was taken as η=r i /r o =0.909 , the inner cylinder Reynolds number was fixed to Re i =3.4×10 4 , and the outer cylinder was kept stationary, resulting in a frictional Reynolds number of Re τ ≈500 , except for the Γ=14 simulation where Re i =1.5×10 4 and Re τ ≈240 . The large-scale rolls were found to remain axially pinned for all simulations. Depending on the initial conditions, stable solutions with different number of rolls n r and roll wavelength λ z were found for Γ=7 . The effect of λ z and n r on the statistics was quantified. The torque and mean flow statistics were found to be independent of both λ z and n r , while the velocity fluctuations and energy spectra showed some box-size dependence. Finally, the axial velocity spectra were found to have a very sharp dropoff for wavelengths larger than λ z , while for the small wavelengths they collapse.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/06
English
Monico Rodolfo, O., Lohse, D., Verzicco, R. (2016). Effect of roll number on the statistics of turbulent Taylor-Couette flow. PHYSICAL REVIEW FLUIDS, 1(5), 054402 [10.1103/PhysRevFluids.1.054402].
Monico Rodolfo, O; Lohse, D; Verzicco, R
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/377164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 14
social impact