Friedreich’s ataxia (FRDA) is a rare monogenic disease characterized by multisystem, slowly progressive degeneration. Because of the genetic defect in a non-coding region of FXN gene, FRDA cells exhibit severe deficit of frataxin protein levels. Hence, FRDA pathophysiology is characterized by a plethora of metabolic disruptions related to iron metabolism, mitochondrial homeostasis and oxidative stress. Importantly, an impairment of the antioxidant defences exacerbates the oxidative damage. This appears closely associated with the disablement of key antioxidant proteins, such as the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and the mitochondrial superoxide dismutase (MnSOD). The cytokine interferon gamma (IFN-γ) has been shown to increase frataxin expression in FRDA cells and to improve functional deficits in FRDA mice. Currently, IFN-γ represents a potential therapy under clinical evaluation in FRDA patients. Here, we show that IFN-γ induces a rapid expression of Nrf2 and MnSOD in different cell types, including FRDA patient-derived fibroblasts. Our data indicate that IFN-γ signals two separate pathways to enhance Nrf2 and MnSOD levels in FRDA fibroblasts. MnSOD expression increased through an early transcriptional regulation, whereas the levels of Nrf2 are induced by a post-transcriptional mechanism. We demonstrate that the treatment of FRDA fibroblasts with IFN-γ stimulates a non-canonical Nrf2 activation pathway through p21 and potentiates antioxidant responses under exposure to hydrogen peroxide. Moreover, IFN-γ significantly reduced the sensitivity to hydrogen peroxide-induced cell death in FRDA fibroblasts. Collectively, these results indicate the presence of multiple pathways triggered by IFN-γ with therapeutic relevance to FRDA.

Luffarelli, R., Panarello, L., Quatrana, A., Tiano, F., Fortuni, S., Rufini, A., et al. (2023). Interferon gamma enhances cytoprotective pathways via Nrf2 and MnSOD induction in Friedreich’s ataxia cells. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 24(16) [10.3390/ijms241612687].

Interferon gamma enhances cytoprotective pathways via Nrf2 and MnSOD induction in Friedreich’s ataxia cells

Luffarelli, R.;Panarello, L.;Quatrana, A.;Tiano, F.;Fortuni, S.;Rufini, A.;Malisan, F.;Testi, R.;Condo', I.
2023-08-11

Abstract

Friedreich’s ataxia (FRDA) is a rare monogenic disease characterized by multisystem, slowly progressive degeneration. Because of the genetic defect in a non-coding region of FXN gene, FRDA cells exhibit severe deficit of frataxin protein levels. Hence, FRDA pathophysiology is characterized by a plethora of metabolic disruptions related to iron metabolism, mitochondrial homeostasis and oxidative stress. Importantly, an impairment of the antioxidant defences exacerbates the oxidative damage. This appears closely associated with the disablement of key antioxidant proteins, such as the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and the mitochondrial superoxide dismutase (MnSOD). The cytokine interferon gamma (IFN-γ) has been shown to increase frataxin expression in FRDA cells and to improve functional deficits in FRDA mice. Currently, IFN-γ represents a potential therapy under clinical evaluation in FRDA patients. Here, we show that IFN-γ induces a rapid expression of Nrf2 and MnSOD in different cell types, including FRDA patient-derived fibroblasts. Our data indicate that IFN-γ signals two separate pathways to enhance Nrf2 and MnSOD levels in FRDA fibroblasts. MnSOD expression increased through an early transcriptional regulation, whereas the levels of Nrf2 are induced by a post-transcriptional mechanism. We demonstrate that the treatment of FRDA fibroblasts with IFN-γ stimulates a non-canonical Nrf2 activation pathway through p21 and potentiates antioxidant responses under exposure to hydrogen peroxide. Moreover, IFN-γ significantly reduced the sensitivity to hydrogen peroxide-induced cell death in FRDA fibroblasts. Collectively, these results indicate the presence of multiple pathways triggered by IFN-γ with therapeutic relevance to FRDA.
11-ago-2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MED/04
Settore BIO/13
Settore MEDS-02/A - Patologia generale
Settore BIOS-10/A - Biologia cellulare e applicata
English
Con Impact Factor ISI
Friedreich’s ataxia; interferon gamma; cytoprotection; Nrf2; MnSOD
Luffarelli, R., Panarello, L., Quatrana, A., Tiano, F., Fortuni, S., Rufini, A., et al. (2023). Interferon gamma enhances cytoprotective pathways via Nrf2 and MnSOD induction in Friedreich’s ataxia cells. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 24(16) [10.3390/ijms241612687].
Luffarelli, R; Panarello, L; Quatrana, A; Tiano, F; Fortuni, S; Rufini, A; Malisan, F; Testi, R; Condo', I
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
ijms-24-12687.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/376823
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact