A fast full second order time-step algorithm for some recently proposed nonlinear, nonlocal active models for the inner ear is analyzed here. In particular, we emphasize the properties of discretized systems and the convergence of a hybrid direct-iterative solver for its approximate solution in view of the parameters of the continuous model. We found that the proposed solver is faster than standard sparse direct solvers for all the considered discrete models. Numerical tests confirm that the proposed techniques are crucial in order to get fast and reliable simulations.

Bertaccini, D., Sisto, R. (2011). Fast numerical solution of nonlinear nonlocal cochlear models. JOURNAL OF COMPUTATIONAL PHYSICS, 230(7), 2575-2587 [10.1016/j.jcp.2010.12.035].

Fast numerical solution of nonlinear nonlocal cochlear models

BERTACCINI, DANIELE;
2011-01-01

Abstract

A fast full second order time-step algorithm for some recently proposed nonlinear, nonlocal active models for the inner ear is analyzed here. In particular, we emphasize the properties of discretized systems and the convergence of a hybrid direct-iterative solver for its approximate solution in view of the parameters of the continuous model. We found that the proposed solver is faster than standard sparse direct solvers for all the considered discrete models. Numerical tests confirm that the proposed techniques are crucial in order to get fast and reliable simulations.
2011
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/08 - ANALISI NUMERICA
Settore FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI
Settore FIS/07 - FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)
English
Con Impact Factor ISI
Cochlear modeling Iterative methods Integrodifferential cochlear models
Bertaccini, D., Sisto, R. (2011). Fast numerical solution of nonlinear nonlocal cochlear models. JOURNAL OF COMPUTATIONAL PHYSICS, 230(7), 2575-2587 [10.1016/j.jcp.2010.12.035].
Bertaccini, D; Sisto, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
YJCPH3390.pdf

solo utenti autorizzati

Dimensione 587.11 kB
Formato Adobe PDF
587.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/37558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact