This study explores the phenomenology of distortion products in nonlinear cochlear models, predicting their amplitude and phase along the basilar membrane. The existence of a backward-traveling wave at the distortion-product frequency, which has been recently questioned by experiments measuring the phase of basilar-membrane vibration, is discussed. The effect of different modeling choices is analyzed, including feed-forward asymmetry, micromechanical roughness, and breaking of scaling symmetry. The experimentally observed negative slope of basilar-membrane phase is predicted by numerical simulations of nonlinear cochlear models under a wide range of parameters and modeling choices. In active models, positive phase slopes are predicted by the quasi-linear analytical computations and by the fully nonlinear numerical simulations only if the distortion-product sources are localized apical to the observation point and if the stapes reflectivity is unrealistically small. The results of this study predict a negative phase slope whenever the source is distributed over a reasonably wide cochlear region and/or a reasonably high stapes reflectivity is assumed. Therefore, the above-mentioned experiments do not contradict "classical" models of cochlear mechanics and of distortion-product generation.
Sisto, R., Moleti, A., Botti, T., Bertaccini, D., Shera, C. (2011). Distortion products and backward-traveling waves in nonlinear active models of the cochlea. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 129(5), 3141-3152 [10.1121/1.3569700].
Distortion products and backward-traveling waves in nonlinear active models of the cochlea
MOLETI, ARTURO;BERTACCINI, DANIELE;
2011-01-01
Abstract
This study explores the phenomenology of distortion products in nonlinear cochlear models, predicting their amplitude and phase along the basilar membrane. The existence of a backward-traveling wave at the distortion-product frequency, which has been recently questioned by experiments measuring the phase of basilar-membrane vibration, is discussed. The effect of different modeling choices is analyzed, including feed-forward asymmetry, micromechanical roughness, and breaking of scaling symmetry. The experimentally observed negative slope of basilar-membrane phase is predicted by numerical simulations of nonlinear cochlear models under a wide range of parameters and modeling choices. In active models, positive phase slopes are predicted by the quasi-linear analytical computations and by the fully nonlinear numerical simulations only if the distortion-product sources are localized apical to the observation point and if the stapes reflectivity is unrealistically small. The results of this study predict a negative phase slope whenever the source is distributed over a reasonably wide cochlear region and/or a reasonably high stapes reflectivity is assumed. Therefore, the above-mentioned experiments do not contradict "classical" models of cochlear mechanics and of distortion-product generation.File | Dimensione | Formato | |
---|---|---|---|
JAS003141.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
901.17 kB
Formato
Adobe PDF
|
901.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.