We study the persistence for long times of the solutions of some infinite--dimensional discrete hamiltonian systems with {\it formal hamiltonian} $\sum_{i=1}^\infty h(A_i) + V(\vp),$ $(A,\vp)\in {\Bbb R}^{\Bbb N}\times {\Bbb T}^{\Bbb N}.$ $V(\vp)$ is not needed small and the problem is perturbative being the kinetic energy unbounded. All the initial data $(A_i(0), \vp_i(0)),$ $i\in {\Bbb N}$ in the phase--space ${\Bbb R}^{\Bbb N} \times {\Bbb T}^{\Bbb N},$ give rise to solutions with $\mod A_i(t) - A_i(0).$ close to zero for exponentially--long times provided that $A_i(0)$ is large enough for $\mod i.$ large. We need $\o \partial h,\partial A_i,{\scriptstyle (A_i(0))}$ unbounded for $i\to+\infty$ making $\vp_i$ a {\it fast variable}; the greater is $i,$ the faster is the angle $\vp_i$ (avoiding the resonances). The estimates are obtained in the spirit of the averaging theory reminding the analytic part of Nekhoroshev--theorem.

Perfetti, P. (2006). A Nekhoroshev theorem for some infinite--dimensional systems. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 5(1), 125-146 [10.3934/cpaa.2006.5.125].

A Nekhoroshev theorem for some infinite--dimensional systems

PERFETTI, PAOLO
2006-03-01

Abstract

We study the persistence for long times of the solutions of some infinite--dimensional discrete hamiltonian systems with {\it formal hamiltonian} $\sum_{i=1}^\infty h(A_i) + V(\vp),$ $(A,\vp)\in {\Bbb R}^{\Bbb N}\times {\Bbb T}^{\Bbb N}.$ $V(\vp)$ is not needed small and the problem is perturbative being the kinetic energy unbounded. All the initial data $(A_i(0), \vp_i(0)),$ $i\in {\Bbb N}$ in the phase--space ${\Bbb R}^{\Bbb N} \times {\Bbb T}^{\Bbb N},$ give rise to solutions with $\mod A_i(t) - A_i(0).$ close to zero for exponentially--long times provided that $A_i(0)$ is large enough for $\mod i.$ large. We need $\o \partial h,\partial A_i,{\scriptstyle (A_i(0))}$ unbounded for $i\to+\infty$ making $\vp_i$ a {\it fast variable}; the greater is $i,$ the faster is the angle $\vp_i$ (avoiding the resonances). The estimates are obtained in the spirit of the averaging theory reminding the analytic part of Nekhoroshev--theorem.
mar-2006
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Nekhoroshev theorem, stability result, infinite--dimensional systems
http://aimsciences.org/journals/displayArticles.jsp?paperID=1549
http://www.mat.uniroma2.it/~perfetti/lavori/lavori.html
Perfetti, P. (2006). A Nekhoroshev theorem for some infinite--dimensional systems. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 5(1), 125-146 [10.3934/cpaa.2006.5.125].
Perfetti, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/37456
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact