Composite booms for solar sails have been prototyped by using innovative smart materials. Shape memory polymer composites (SMPCs) have been manufactured by interposing SMP layers between carbon-fiber-reinforced (CFR) plies. A polyimide membrane has been embedded into the CFR-SMPC frame of the sail during lamination. The sail's size has been limited to 250 x 250 mm2 to allow its testing on Earth. The feasibility of large sail deployments has been shown by prototyping small CFR-SMPC elements to insert only in the folding zones. Numerical simulation by finite element modeling allowed for predicting the presence of wrinkles close to the frame's vertexes in the cases of large sails under solar radiation pressures. Nevertheless, the frame's configuration, with SMPC booms at all the edges of the sail membrane, seems to be suitable for drag sails instead of propulsion. On-Earth recovery tests have been performed on 180 degrees folded sails by using flexible heaters. After an initial induction time, the maximum rate was reached with a following drop. In the case of two heaters per folding zone, the angular recovery rate reached the maximum value of about 30 deg/s at the power of 34 W, and full recovery was made in 20 s.

Quadrini, F., Iorio, L., Santo, L., Circi, C., Cavallini, E., Carmine Pellegrini, R. (2023). Smart composite booms for solar sails. JOURNAL OF COMPOSITES SCIENCE, 7(12) [10.3390/jcs7120495].

Smart composite booms for solar sails

Fabrizio Quadrini;Leandro Iorio;Loredana Santo;
2023-01-01

Abstract

Composite booms for solar sails have been prototyped by using innovative smart materials. Shape memory polymer composites (SMPCs) have been manufactured by interposing SMP layers between carbon-fiber-reinforced (CFR) plies. A polyimide membrane has been embedded into the CFR-SMPC frame of the sail during lamination. The sail's size has been limited to 250 x 250 mm2 to allow its testing on Earth. The feasibility of large sail deployments has been shown by prototyping small CFR-SMPC elements to insert only in the folding zones. Numerical simulation by finite element modeling allowed for predicting the presence of wrinkles close to the frame's vertexes in the cases of large sails under solar radiation pressures. Nevertheless, the frame's configuration, with SMPC booms at all the edges of the sail membrane, seems to be suitable for drag sails instead of propulsion. On-Earth recovery tests have been performed on 180 degrees folded sails by using flexible heaters. After an initial induction time, the maximum rate was reached with a following drop. In the case of two heaters per folding zone, the angular recovery rate reached the maximum value of about 30 deg/s at the power of 34 W, and full recovery was made in 20 s.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/16
English
Solar sail
Shape memory polymer composites
Composite booms
Self-deploying structures
Smart materials
Quadrini, F., Iorio, L., Santo, L., Circi, C., Cavallini, E., Carmine Pellegrini, R. (2023). Smart composite booms for solar sails. JOURNAL OF COMPOSITES SCIENCE, 7(12) [10.3390/jcs7120495].
Quadrini, F; Iorio, L; Santo, L; Circi, C; Cavallini, E; Carmine Pellegrini, R
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/373466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact