This paper concerns sample path large deviations for Poisson shot noise processes, and applications in queueing theory. We first show that, under an exponential tail condition, Poisson shot noise processes satisfy a sample path large deviations principle with respect to the topology of pointwise convergence. Under a stronger superexponential tail condition, we extend this result to the topology of uniform convergence. We also give applications of this result to determining the most likely path to overflow in a single server queue, and to finding tail asymptotics for the queue lengths at priority queues.
Ganesh, A., Macci, C., Torrisi, G. (2005). Sample path large deviations principles for poisson shot noise processes, and applications. ELECTRONIC JOURNAL OF PROBABILITY, 10, 1026-1043.
Sample path large deviations principles for poisson shot noise processes, and applications
MACCI, CLAUDIO;
2005-01-01
Abstract
This paper concerns sample path large deviations for Poisson shot noise processes, and applications in queueing theory. We first show that, under an exponential tail condition, Poisson shot noise processes satisfy a sample path large deviations principle with respect to the topology of pointwise convergence. Under a stronger superexponential tail condition, we extend this result to the topology of uniform convergence. We also give applications of this result to determining the most likely path to overflow in a single server queue, and to finding tail asymptotics for the queue lengths at priority queues.File | Dimensione | Formato | |
---|---|---|---|
ganeshmaccitorrisiEJP.pdf
accesso aperto
Licenza:
Non specificato
Dimensione
171.49 kB
Formato
Adobe PDF
|
171.49 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.