In this note, we generalize the notion of entropy for potentials in a relative full Monge–Amp`ere mass E(X,θ,φ), for a model potential φ. We then investigate stability properties of this condition with respect to blow-ups and perturbation of the cohomology class. We also prove a Moser–Trudinger type inequality with general weight and we show n that functions with finite entropy lie in a relative energy class E n−1 (X, θ, φ) (provided n > 1), while they have the same singularities of φ when n = 1.

Di Nezza, E., Trusiani, A., Trapani, S. (2024). Entropy for Monge-Ampère measures in the prescribed singularities setting. SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS, 20 [10.3842/SIGMA.2024.039].

Entropy for Monge-Ampère measures in the prescribed singularities setting

Trapani, S
2024-05-30

Abstract

In this note, we generalize the notion of entropy for potentials in a relative full Monge–Amp`ere mass E(X,θ,φ), for a model potential φ. We then investigate stability properties of this condition with respect to blow-ups and perturbation of the cohomology class. We also prove a Moser–Trudinger type inequality with general weight and we show n that functions with finite entropy lie in a relative energy class E n−1 (X, θ, φ) (provided n > 1), while they have the same singularities of φ when n = 1.
30-mag-2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03
English
Con Impact Factor ISI
K ̈ahler manifolds; Monge–Amp`ere energy; entropy; big classes
Di Nezza, E., Trusiani, A., Trapani, S. (2024). Entropy for Monge-Ampère measures in the prescribed singularities setting. SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS, 20 [10.3842/SIGMA.2024.039].
Di Nezza, E; Trusiani, A; Trapani, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
sigma24-039.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 461.25 kB
Formato Adobe PDF
461.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/371163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact