Cannabinoid receptors and their endogenous ligands are potent inhibitors of neurotransmitter release in the brain. Here, we show that in a rat model of Parkinson's disease induced by unilateral nigral lesion with 6-hydroxydopamine (6-OHDA), the striatal levels of the endocannabinoid anandamide (AEA) were increased, while the activity of its membrane transporter and hydrolase (fatty-acid amide hydrolase, FAAH) were decreased. These changes were not observed in the cerebellum of the same animals. Moreover, the frequency and amplitude of glutamate-mediated spontaneous excitatory post-synaptic currents were augmented in striatal spiny neurones recorded from parkinsonian rats. Remarkably, the anomalies in the endocannabinoid system, as well as those in glutamatergic activity, were completely reversed by chronic treatment of parkinsonian rats with levodopa, and the pharmacological inhibition of FAAH restored a normal glutamatergic activity in 6-OHDA-lesioned animals. Thus, the increased striatal levels of AEA may reflect a compensatory mechanism trying to counteract the abnormal corticostriatal glutamatergic drive in parkinsonian rats. However, this mechanism seems to be unsuccessful, since spontaneous excitatory activity is still higher in these animals. Taken together, these data show that anomalies in the endocannabinoid system induced by experimental parkinsonism are restricted to the striatum and can be reversed by chronic levodopa treatment, and suggest that inhibition of FAAH might represent a possible target to decrease the abnormal cortical glutamatergic drive in Parkinson's disease.

Maccarrone, M., Gubellini, P., Bari, M., Picconi, B., Battista, N., Centonze, D., et al. (2003). Levodopa treatment reverses endocannabinoid system abnormalities in experimental parkinsonism. JOURNAL OF NEUROCHEMISTRY, 85(4), 1018-1025 [10.1046/j.1471-4159.2003.01759.x].

Levodopa treatment reverses endocannabinoid system abnormalities in experimental parkinsonism

MACCARRONE, MAURO;CENTONZE, DIEGO;BERNARDI, GIORGIO;CALABRESI, PAOLO
2003-05-01

Abstract

Cannabinoid receptors and their endogenous ligands are potent inhibitors of neurotransmitter release in the brain. Here, we show that in a rat model of Parkinson's disease induced by unilateral nigral lesion with 6-hydroxydopamine (6-OHDA), the striatal levels of the endocannabinoid anandamide (AEA) were increased, while the activity of its membrane transporter and hydrolase (fatty-acid amide hydrolase, FAAH) were decreased. These changes were not observed in the cerebellum of the same animals. Moreover, the frequency and amplitude of glutamate-mediated spontaneous excitatory post-synaptic currents were augmented in striatal spiny neurones recorded from parkinsonian rats. Remarkably, the anomalies in the endocannabinoid system, as well as those in glutamatergic activity, were completely reversed by chronic treatment of parkinsonian rats with levodopa, and the pharmacological inhibition of FAAH restored a normal glutamatergic activity in 6-OHDA-lesioned animals. Thus, the increased striatal levels of AEA may reflect a compensatory mechanism trying to counteract the abnormal corticostriatal glutamatergic drive in parkinsonian rats. However, this mechanism seems to be unsuccessful, since spontaneous excitatory activity is still higher in these animals. Taken together, these data show that anomalies in the endocannabinoid system induced by experimental parkinsonism are restricted to the striatum and can be reversed by chronic levodopa treatment, and suggest that inhibition of FAAH might represent a possible target to decrease the abnormal cortical glutamatergic drive in Parkinson's disease.
mag-2003
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MED/26 - NEUROLOGIA
English
Con Impact Factor ISI
Corpus Striatum; Glycerides; Rats, Wistar; Binding, Competitive; Rats; Cyclohexanols; Endocannabinoids; Receptors, Cannabinoid; Animals; Arachidonic Acids; Patch-Clamp Techniques; Oxidopamine; Levodopa; Glutamic Acid; Disease Models, Animal; Cerebellum; Antiparkinson Agents; Excitatory Postsynaptic Potentials; Receptors, Drug; Amidohydrolases; Polyunsaturated Alkamides; Fatty Acids, Unsaturated; Parkinsonian Disorders; Phospholipase D
Maccarrone, M., Gubellini, P., Bari, M., Picconi, B., Battista, N., Centonze, D., et al. (2003). Levodopa treatment reverses endocannabinoid system abnormalities in experimental parkinsonism. JOURNAL OF NEUROCHEMISTRY, 85(4), 1018-1025 [10.1046/j.1471-4159.2003.01759.x].
Maccarrone, M; Gubellini, P; Bari, M; Picconi, B; Battista, N; Centonze, D; Bernardi, G; Finazzi Agrò, A; Calabresi, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/36958
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 129
  • ???jsp.display-item.citation.isi??? 112
social impact